Compact Finite Difference Schemes for Mixed Initial-Boundary Value Problems
This paper discusses a class of compact second order accurate finite difference equations for mixed initial-boundary value problems for hyperbolic and convective-diffusion equations. Convergence is proved by means of energy arguments and both types of equations are solved by similar algorithms. For...
Uloženo v:
| Vydáno v: | SIAM journal on numerical analysis Ročník 19; číslo 4; s. 698 - 720 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Society for Industrial and Applied Mathematics
01.08.1982
|
| Témata: | |
| ISSN: | 0036-1429, 1095-7170 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper discusses a class of compact second order accurate finite difference equations for mixed initial-boundary value problems for hyperbolic and convective-diffusion equations. Convergence is proved by means of energy arguments and both types of equations are solved by similar algorithms. For hyperbolic equations an extension of the Lax-Wendroff method is described which incorporates dissipative boundary conditions. Upwind-downwind differencing techniques arise as the formal hyperbolic limit of the convective-diffusion equation. Finally, a finite difference "chain-rule" transforms the schemes from rectangular to quadrilateral subdomains. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0036-1429 1095-7170 |
| DOI: | 10.1137/0719049 |