Compact Finite Difference Schemes for Mixed Initial-Boundary Value Problems

This paper discusses a class of compact second order accurate finite difference equations for mixed initial-boundary value problems for hyperbolic and convective-diffusion equations. Convergence is proved by means of energy arguments and both types of equations are solved by similar algorithms. For...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on numerical analysis Ročník 19; číslo 4; s. 698 - 720
Hlavní autoři: Philips, Richard B., Rose, Milton E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.08.1982
Témata:
ISSN:0036-1429, 1095-7170
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper discusses a class of compact second order accurate finite difference equations for mixed initial-boundary value problems for hyperbolic and convective-diffusion equations. Convergence is proved by means of energy arguments and both types of equations are solved by similar algorithms. For hyperbolic equations an extension of the Lax-Wendroff method is described which incorporates dissipative boundary conditions. Upwind-downwind differencing techniques arise as the formal hyperbolic limit of the convective-diffusion equation. Finally, a finite difference "chain-rule" transforms the schemes from rectangular to quadrilateral subdomains.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1429
1095-7170
DOI:10.1137/0719049