Majorization–minimization generalized Krylov subspace methods for ℓp–ℓq optimization applied to image restoration
A new majorization–minimization framework for ℓ p – ℓ q image restoration is presented. The solution is sought in a generalized Krylov subspace that is build up during the solution process. Proof of convergence to a stationary point of the minimized ℓ p – ℓ q functional is provided for both convex a...
Uloženo v:
| Vydáno v: | BIT Numerical Mathematics Ročník 57; číslo 2; s. 351 - 378 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.06.2017
|
| Témata: | |
| ISSN: | 0006-3835, 1572-9125 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A new majorization–minimization framework for
ℓ
p
–
ℓ
q
image restoration is presented. The solution is sought in a generalized Krylov subspace that is build up during the solution process. Proof of convergence to a stationary point of the minimized
ℓ
p
–
ℓ
q
functional is provided for both convex and nonconvex problems. Computed examples illustrate that high-quality restorations can be determined with a modest number of iterations and that the storage requirement of the method is not very large. A comparison with related methods shows the competitiveness of the method proposed. |
|---|---|
| ISSN: | 0006-3835 1572-9125 |
| DOI: | 10.1007/s10543-016-0643-8 |