Criteria of the k-singularity and division of 1-singular systems

The concept of the k -singularity of systems of points in ℝ m space with l 1 metrics is studied. A system of q points is k -singular if and only if the dimensionality of the linear space of polynomials with powers no higher than the k of the columns of the matrix of pair-wise distances (element-wise...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Moscow University computational mathematics and cybernetics Ročník 34; číslo 4; s. 164 - 171
Hlavní autor: Karpovich, P. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Allerton Press, Inc 01.12.2010
Témata:
ISSN:0278-6419, 1934-8428
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The concept of the k -singularity of systems of points in ℝ m space with l 1 metrics is studied. A system of q points is k -singular if and only if the dimensionality of the linear space of polynomials with powers no higher than the k of the columns of the matrix of pair-wise distances (element-wise multiplication) is strictly less than q . An algebraic criterion of k -singularity is obtained. The problem of dividing a system of points into subsystems that are not 1-singular is considered. An estimate of the minimum number of such subsystems is obtained.
ISSN:0278-6419
1934-8428
DOI:10.3103/S0278641910040035