Optimized Extreme Gradient Boosting with Remora Algorithm for Congestion Prediction in Transport Layer
Transmission control protocol (TCP) is the most common protocol found in recent networks to maintain reliable communication. The most popular transport protocol in use today is TCP that cannot fully utilize the ability of the network because of the constraints of its conservative congestion control...
Uloženo v:
| Vydáno v: | International journal of computer network and information security Ročník 16; číslo 3; s. 144 - 158 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
08.06.2024
|
| ISSN: | 2074-9090, 2074-9104 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Transmission control protocol (TCP) is the most common protocol found in recent networks to maintain reliable communication. The most popular transport protocol in use today is TCP that cannot fully utilize the ability of the network because of the constraints of its conservative congestion control algorithm and favor’s reliability over timeliness. Despite congestion is the most frequent cause of lost packets, transmission defects can also result in packet loss. In response to packet loss, end-to-end congestion control mechanism in TCP limits the amount of remarkable, unacknowledged data segments that are permitted in the network. To overcome the drawback, Optimized Extreme Gradient Boosting Algorithm is proposed to predict the congestion. Initially, the data is collected and given to data preprocessing to improve the data quality. Min-Max normalization is used to normalize the data in the particular range and KNN-based missing value imputation is used to replace the missing values in the original data in the preprocessing section. Then the preprocessed data is fed into the Optimized Extreme Gradient Boosting Algorithm to predict the congestion. Remora optimization is used in the designed model for optimally selecting the learning rate to minimize the error for enhancing the prediction accuracy in machine learning. For validating the proposed model, the performance metrics attained by the proposed and existing model are compared. Accuracy, precision, recall and error values for the proposed methods are 96%, 97%, 96% and 3% values are obtained. Thus, the proposed optimized extreme gradient boosting with the remora algorithm for congestion prediction in the transport layer method is the best method than the existing algorithm. |
|---|---|
| AbstractList | Transmission control protocol (TCP) is the most common protocol found in recent networks to maintain reliable communication. The most popular transport protocol in use today is TCP that cannot fully utilize the ability of the network because of the constraints of its conservative congestion control algorithm and favor’s reliability over timeliness. Despite congestion is the most frequent cause of lost packets, transmission defects can also result in packet loss. In response to packet loss, end-to-end congestion control mechanism in TCP limits the amount of remarkable, unacknowledged data segments that are permitted in the network. To overcome the drawback, Optimized Extreme Gradient Boosting Algorithm is proposed to predict the congestion. Initially, the data is collected and given to data preprocessing to improve the data quality. Min-Max normalization is used to normalize the data in the particular range and KNN-based missing value imputation is used to replace the missing values in the original data in the preprocessing section. Then the preprocessed data is fed into the Optimized Extreme Gradient Boosting Algorithm to predict the congestion. Remora optimization is used in the designed model for optimally selecting the learning rate to minimize the error for enhancing the prediction accuracy in machine learning. For validating the proposed model, the performance metrics attained by the proposed and existing model are compared. Accuracy, precision, recall and error values for the proposed methods are 96%, 97%, 96% and 3% values are obtained. Thus, the proposed optimized extreme gradient boosting with the remora algorithm for congestion prediction in the transport layer method is the best method than the existing algorithm. |
| Author | Kumar, Ajay Hemrajani, Naveen |
| Author_xml | – sequence: 1 givenname: Ajay surname: Kumar fullname: Kumar, Ajay – sequence: 2 givenname: Naveen surname: Hemrajani fullname: Hemrajani, Naveen |
| BookMark | eNp9kMFOwzAMhiM0JMbYA3DLC7Q4TZu2xzGNgTRpCI1zlSXuyLQmUxIJxtPTMrhwwBf__uXPkv9rMrLOIiG3DNKiYsWd2StrQppBlqfAUwYXZJxBmSc1g3z0q6GGKzINYQ99iYLxko9Juz5G05lP1HTxET12SJdeaoM20nvnQjR2R99NfKMv2Dkv6eywc76fO9o6T-fO7rBfcpY-e9RGfUtj6cZLG47OR7qSJ_Q35LKVh4DTnz4hrw-LzfwxWa2XT_PZKlEZcEhYXXCRb7dSatVyXUIlUFWiQF3XnAOroNRCAus9VknJ2q1QBSsrYFJALpBPCDvfVd6F4LFtjt500p8aBs2QVXPOqhmyaoD3ds-UfxhlohweiV6awz_kFw3Jc98 |
| CitedBy_id | crossref_primary_10_1080_19475705_2024_2443465 |
| ContentType | Journal Article |
| CorporateAuthor | Department of CSE, JECRC University, Jaipur, Rajasthan, India |
| CorporateAuthor_xml | – name: Department of CSE, JECRC University, Jaipur, Rajasthan, India |
| DBID | AAYXX CITATION |
| DOI | 10.5815/ijcnis.2024.03.10 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2074-9104 |
| EndPage | 158 |
| ExternalDocumentID | 10_5815_ijcnis_2024_03_10 |
| GroupedDBID | .DC 5VS 8FE 8FG AAYXX ABUWG AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- KQ8 KWQ OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC V3M |
| ID | FETCH-LOGICAL-c2030-195364bbaadcf3d7086ec865ed993301807d6a01c8618aa1fb6c517801a6046e3 |
| ISSN | 2074-9090 |
| IngestDate | Tue Nov 18 21:50:58 EST 2025 Sat Nov 29 06:19:21 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2030-195364bbaadcf3d7086ec865ed993301807d6a01c8618aa1fb6c517801a6046e3 |
| OpenAccessLink | https://www.mecs-press.org/ijcnis/ijcnis-v16-n3/IJCNIS-V16-N3-10.pdf |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_5815_ijcnis_2024_03_10 crossref_citationtrail_10_5815_ijcnis_2024_03_10 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-08 |
| PublicationDateYYYYMMDD | 2024-06-08 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of computer network and information security |
| PublicationYear | 2024 |
| SSID | ssj0000651373 |
| Score | 2.2725282 |
| Snippet | Transmission control protocol (TCP) is the most common protocol found in recent networks to maintain reliable communication. The most popular transport... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 144 |
| Title | Optimized Extreme Gradient Boosting with Remora Algorithm for Congestion Prediction in Transport Layer |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2074-9104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651373 issn: 2074-9090 databaseCode: P5Z dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2074-9104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651373 issn: 2074-9090 databaseCode: K7- dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: East & South Asia Database customDbUrl: eissn: 2074-9104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651373 issn: 2074-9090 databaseCode: BVBZV dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2074-9104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651373 issn: 2074-9090 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2074-9104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651373 issn: 2074-9090 databaseCode: PIMPY dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQc4IJ6ivOQDJ6KAnYdjH7dVoYeqVKhUFZfI8Tooq91slQ2rbX8RP5Nx7DihqBI9cIl2rayVzXyyxzPffIPQOypEobhSIStTFSaS8pDPNA8JKbJUi0wJ1UnmH2cnJ_ziQpxOJr_6WpjNIqtrvt2Ky_9qahgDY5vS2TuY208KA_AZjA5XMDtc_8nwX2ARWFbX4EgeblsT_Qs-Nx2vqzWFDevWR1-_GpKtDKaLH6sGvi87xuHBqjYZJwOK08YkcXoypFdBD47llaP0zgca_BBVHGlRKNcyIqgt2dxJPfmCyWDtuucNCSVH-J7OB3LPkV42cm57T8FusNGues3FKqKk41SNltfIsD8FsQ1CP-jRmGtC7NdkNsJePFpgqVWLdHs1tbLvN7eBlHeKGdVc1ZWRZI8SI2Tr6LN_SG7f2Ao9QRGORmaS3E6RmylyEuemlm83ylIB6-fu_vn-93MfzwNXjsYdocH_SZtEN_N8_OtRRm7QyJ85e4QeuoMInloAPUYTXT9BD0bylE9R6aGEHZRwDyXcQwkbKGELJeyhhMHEeIASHqCEqxp7KOEOSs_Qt0-HZwdHoevLEaoI9oTQZF5ZUhRSzlQZzzI4FWvFWapnwoTHKCfZjElCYYxyKWlZMJXSDHwhyUjCdPwc7dSrWr9AWJRw_tWkLCJwjYuSGSkiEjFZRiSFF8f2EOlfU66caL3pnbLIb7XQHnrvf3JpFVtuv_nlXW5-he4PoH6Ndtrmp36D7qlNW62btw4QvwFYY5WM |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Extreme+Gradient+Boosting+with+Remora+Algorithm+for+Congestion+Prediction+in+Transport+Layer&rft.jtitle=International+journal+of+computer+network+and+information+security&rft.au=Kumar%2C+Ajay&rft.au=Hemrajani%2C+Naveen&rft.date=2024-06-08&rft.issn=2074-9090&rft.eissn=2074-9104&rft.volume=16&rft.issue=3&rft.spage=144&rft.epage=158&rft_id=info:doi/10.5815%2Fijcnis.2024.03.10&rft.externalDBID=n%2Fa&rft.externalDocID=10_5815_ijcnis_2024_03_10 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2074-9090&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2074-9090&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2074-9090&client=summon |