Optimized Extreme Gradient Boosting with Remora Algorithm for Congestion Prediction in Transport Layer

Transmission control protocol (TCP) is the most common protocol found in recent networks to maintain reliable communication. The most popular transport protocol in use today is TCP that cannot fully utilize the ability of the network because of the constraints of its conservative congestion control...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer network and information security Ročník 16; číslo 3; s. 144 - 158
Hlavní autoři: Kumar, Ajay, Hemrajani, Naveen
Médium: Journal Article
Jazyk:angličtina
Vydáno: 08.06.2024
ISSN:2074-9090, 2074-9104
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Transmission control protocol (TCP) is the most common protocol found in recent networks to maintain reliable communication. The most popular transport protocol in use today is TCP that cannot fully utilize the ability of the network because of the constraints of its conservative congestion control algorithm and favor’s reliability over timeliness. Despite congestion is the most frequent cause of lost packets, transmission defects can also result in packet loss. In response to packet loss, end-to-end congestion control mechanism in TCP limits the amount of remarkable, unacknowledged data segments that are permitted in the network. To overcome the drawback, Optimized Extreme Gradient Boosting Algorithm is proposed to predict the congestion. Initially, the data is collected and given to data preprocessing to improve the data quality. Min-Max normalization is used to normalize the data in the particular range and KNN-based missing value imputation is used to replace the missing values in the original data in the preprocessing section. Then the preprocessed data is fed into the Optimized Extreme Gradient Boosting Algorithm to predict the congestion. Remora optimization is used in the designed model for optimally selecting the learning rate to minimize the error for enhancing the prediction accuracy in machine learning. For validating the proposed model, the performance metrics attained by the proposed and existing model are compared. Accuracy, precision, recall and error values for the proposed methods are 96%, 97%, 96% and 3% values are obtained. Thus, the proposed optimized extreme gradient boosting with the remora algorithm for congestion prediction in the transport layer method is the best method than the existing algorithm.
AbstractList Transmission control protocol (TCP) is the most common protocol found in recent networks to maintain reliable communication. The most popular transport protocol in use today is TCP that cannot fully utilize the ability of the network because of the constraints of its conservative congestion control algorithm and favor’s reliability over timeliness. Despite congestion is the most frequent cause of lost packets, transmission defects can also result in packet loss. In response to packet loss, end-to-end congestion control mechanism in TCP limits the amount of remarkable, unacknowledged data segments that are permitted in the network. To overcome the drawback, Optimized Extreme Gradient Boosting Algorithm is proposed to predict the congestion. Initially, the data is collected and given to data preprocessing to improve the data quality. Min-Max normalization is used to normalize the data in the particular range and KNN-based missing value imputation is used to replace the missing values in the original data in the preprocessing section. Then the preprocessed data is fed into the Optimized Extreme Gradient Boosting Algorithm to predict the congestion. Remora optimization is used in the designed model for optimally selecting the learning rate to minimize the error for enhancing the prediction accuracy in machine learning. For validating the proposed model, the performance metrics attained by the proposed and existing model are compared. Accuracy, precision, recall and error values for the proposed methods are 96%, 97%, 96% and 3% values are obtained. Thus, the proposed optimized extreme gradient boosting with the remora algorithm for congestion prediction in the transport layer method is the best method than the existing algorithm.
Author Kumar, Ajay
Hemrajani, Naveen
Author_xml – sequence: 1
  givenname: Ajay
  surname: Kumar
  fullname: Kumar, Ajay
– sequence: 2
  givenname: Naveen
  surname: Hemrajani
  fullname: Hemrajani, Naveen
BookMark eNp9kMFOwzAMhiM0JMbYA3DLC7Q4TZu2xzGNgTRpCI1zlSXuyLQmUxIJxtPTMrhwwBf__uXPkv9rMrLOIiG3DNKiYsWd2StrQppBlqfAUwYXZJxBmSc1g3z0q6GGKzINYQ99iYLxko9Juz5G05lP1HTxET12SJdeaoM20nvnQjR2R99NfKMv2Dkv6eywc76fO9o6T-fO7rBfcpY-e9RGfUtj6cZLG47OR7qSJ_Q35LKVh4DTnz4hrw-LzfwxWa2XT_PZKlEZcEhYXXCRb7dSatVyXUIlUFWiQF3XnAOroNRCAus9VknJ2q1QBSsrYFJALpBPCDvfVd6F4LFtjt500p8aBs2QVXPOqhmyaoD3ds-UfxhlohweiV6awz_kFw3Jc98
CitedBy_id crossref_primary_10_1080_19475705_2024_2443465
ContentType Journal Article
CorporateAuthor Department of CSE, JECRC University, Jaipur, Rajasthan, India
CorporateAuthor_xml – name: Department of CSE, JECRC University, Jaipur, Rajasthan, India
DBID AAYXX
CITATION
DOI 10.5815/ijcnis.2024.03.10
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2074-9104
EndPage 158
ExternalDocumentID 10_5815_ijcnis_2024_03_10
GroupedDBID .DC
5VS
8FE
8FG
AAYXX
ABUWG
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
KQ8
KWQ
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
V3M
ID FETCH-LOGICAL-c2030-195364bbaadcf3d7086ec865ed993301807d6a01c8618aa1fb6c517801a6046e3
ISSN 2074-9090
IngestDate Tue Nov 18 21:50:58 EST 2025
Sat Nov 29 06:19:21 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2030-195364bbaadcf3d7086ec865ed993301807d6a01c8618aa1fb6c517801a6046e3
OpenAccessLink https://www.mecs-press.org/ijcnis/ijcnis-v16-n3/IJCNIS-V16-N3-10.pdf
PageCount 15
ParticipantIDs crossref_primary_10_5815_ijcnis_2024_03_10
crossref_citationtrail_10_5815_ijcnis_2024_03_10
PublicationCentury 2000
PublicationDate 2024-06-08
PublicationDateYYYYMMDD 2024-06-08
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-08
  day: 08
PublicationDecade 2020
PublicationTitle International journal of computer network and information security
PublicationYear 2024
SSID ssj0000651373
Score 2.2725282
Snippet Transmission control protocol (TCP) is the most common protocol found in recent networks to maintain reliable communication. The most popular transport...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 144
Title Optimized Extreme Gradient Boosting with Remora Algorithm for Congestion Prediction in Transport Layer
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2074-9104
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651373
  issn: 2074-9090
  databaseCode: P5Z
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2074-9104
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651373
  issn: 2074-9090
  databaseCode: K7-
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: East & South Asia Database
  customDbUrl:
  eissn: 2074-9104
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651373
  issn: 2074-9090
  databaseCode: BVBZV
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastsouthasia
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2074-9104
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651373
  issn: 2074-9090
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2074-9104
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651373
  issn: 2074-9090
  databaseCode: PIMPY
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQc4IJ6ivOQDJ6KAnYdjH7dVoYeqVKhUFZfI8Tooq91slQ2rbX8RP5Nx7DihqBI9cIl2rayVzXyyxzPffIPQOypEobhSIStTFSaS8pDPNA8JKbJUi0wJ1UnmH2cnJ_ziQpxOJr_6WpjNIqtrvt2Ky_9qahgDY5vS2TuY208KA_AZjA5XMDtc_8nwX2ARWFbX4EgeblsT_Qs-Nx2vqzWFDevWR1-_GpKtDKaLH6sGvi87xuHBqjYZJwOK08YkcXoypFdBD47llaP0zgca_BBVHGlRKNcyIqgt2dxJPfmCyWDtuucNCSVH-J7OB3LPkV42cm57T8FusNGues3FKqKk41SNltfIsD8FsQ1CP-jRmGtC7NdkNsJePFpgqVWLdHs1tbLvN7eBlHeKGdVc1ZWRZI8SI2Tr6LN_SG7f2Ao9QRGORmaS3E6RmylyEuemlm83ylIB6-fu_vn-93MfzwNXjsYdocH_SZtEN_N8_OtRRm7QyJ85e4QeuoMInloAPUYTXT9BD0bylE9R6aGEHZRwDyXcQwkbKGELJeyhhMHEeIASHqCEqxp7KOEOSs_Qt0-HZwdHoevLEaoI9oTQZF5ZUhRSzlQZzzI4FWvFWapnwoTHKCfZjElCYYxyKWlZMJXSDHwhyUjCdPwc7dSrWr9AWJRw_tWkLCJwjYuSGSkiEjFZRiSFF8f2EOlfU66caL3pnbLIb7XQHnrvf3JpFVtuv_nlXW5-he4PoH6Ndtrmp36D7qlNW62btw4QvwFYY5WM
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Extreme+Gradient+Boosting+with+Remora+Algorithm+for+Congestion+Prediction+in+Transport+Layer&rft.jtitle=International+journal+of+computer+network+and+information+security&rft.au=Kumar%2C+Ajay&rft.au=Hemrajani%2C+Naveen&rft.date=2024-06-08&rft.issn=2074-9090&rft.eissn=2074-9104&rft.volume=16&rft.issue=3&rft.spage=144&rft.epage=158&rft_id=info:doi/10.5815%2Fijcnis.2024.03.10&rft.externalDBID=n%2Fa&rft.externalDocID=10_5815_ijcnis_2024_03_10
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2074-9090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2074-9090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2074-9090&client=summon