Decoding algorithms for surface codes
Quantum technologies have the potential to solve certain computationally hard problems with polynomial or super-polynomial speedups when compared to classical methods. Unfortunately, the unstable nature of quantum information makes it prone to errors. For this reason, quantum error correction is an...
Uložené v:
| Vydané v: | Quantum (Vienna, Austria) Ročník 8; s. 1498 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
10.10.2024
|
| ISSN: | 2521-327X, 2521-327X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Quantum technologies have the potential to solve certain computationally hard problems with polynomial or super-polynomial speedups when compared to classical methods. Unfortunately, the unstable nature of quantum information makes it prone to errors. For this reason, quantum error correction is an invaluable tool to make quantum information reliable and enable the ultimate goal of fault-tolerant quantum computing. Surface codes currently stand as the most promising candidates to build near term error corrected qubits given their two-dimensional architecture, the requirement of only local operations, and high tolerance to quantum noise. Decoding algorithms are an integral component of any error correction scheme, as they are tasked with producing accurate estimates of the errors that affect quantum information, so that they can subsequently be corrected. A critical aspect of decoding algorithms is their speed, since the quantum state will suffer additional errors with the passage of time. This poses a connundrum, where decoding performance is improved at the expense of complexity and viceversa. In this review, a thorough discussion of state-of-the-art decoding algorithms for surface codes is provided. The target audience of this work are both readers with an introductory understanding of the field as well as those seeking to further their knowledge of the decoding paradigm of surface codes. We describe the core principles of these decoding methods as well as existing variants that show promise for improved results. In addition, both the decoding performance, in terms of error correction capability, and decoding complexity, are compared. A review of the existing software tools regarding surface codes decoding is also provided. |
|---|---|
| AbstractList | Quantum technologies have the potential to solve certain computationally hard problems with polynomial or super-polynomial speedups when compared to classical methods. Unfortunately, the unstable nature of quantum information makes it prone to errors. For this reason, quantum error correction is an invaluable tool to make quantum information reliable and enable the ultimate goal of fault-tolerant quantum computing. Surface codes currently stand as the most promising candidates to build near term error corrected qubits given their two-dimensional architecture, the requirement of only local operations, and high tolerance to quantum noise. Decoding algorithms are an integral component of any error correction scheme, as they are tasked with producing accurate estimates of the errors that affect quantum information, so that they can subsequently be corrected. A critical aspect of decoding algorithms is their speed, since the quantum state will suffer additional errors with the passage of time. This poses a connundrum, where decoding performance is improved at the expense of complexity and viceversa. In this review, a thorough discussion of state-of-the-art decoding algorithms for surface codes is provided. The target audience of this work are both readers with an introductory understanding of the field as well as those seeking to further their knowledge of the decoding paradigm of surface codes. We describe the core principles of these decoding methods as well as existing variants that show promise for improved results. In addition, both the decoding performance, in terms of error correction capability, and decoding complexity, are compared. A review of the existing software tools regarding surface codes decoding is also provided. |
| ArticleNumber | 1498 |
| Author | Fuentes, Patricio deMarti iOlius, Antonio Crespo, Pedro M. Etxezarreta Martinez, Josu Orús, Román |
| Author_xml | – sequence: 1 givenname: Antonio surname: deMarti iOlius fullname: deMarti iOlius, Antonio organization: Department of Basic Sciences, Tecnun - University of Navarra, 20018 San Sebastian, Spain – sequence: 2 givenname: Patricio surname: Fuentes fullname: Fuentes, Patricio organization: Photonic Inc., Vancouver, British Columbia, Canada – sequence: 3 givenname: Román surname: Orús fullname: Orús, Román organization: Multiverse Computing, Pio Baroja 37, 20008 San Sebastián, Spain, Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain, IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain – sequence: 4 givenname: Pedro M. surname: Crespo fullname: Crespo, Pedro M. organization: Department of Basic Sciences, Tecnun - University of Navarra, 20018 San Sebastian, Spain – sequence: 5 givenname: Josu surname: Etxezarreta Martinez fullname: Etxezarreta Martinez, Josu organization: Department of Basic Sciences, Tecnun - University of Navarra, 20018 San Sebastian, Spain |
| BookMark | eNp9kEtLAzEUhYMoWGv_gKvZuBzNa_JYSn0VCm4U3IWbTFJTphObjAv_vdNWRFwIB-6L83E5Z-i4T71H6ILgK0oZI9fbmmLKa4L34lodoQltKKkZla_Hv_pTNCtljTGmSgqh-ARd3nqX2tivKuhWKcfhbVOqkHJVPnIA56vx6ss5OgnQFT_7rlP0cn_3PH-sl08Pi_nNsnbjA6qmWkoZWhqswNBabhUO2mnpLQfgRMk2MBG84NQHRsE1jcS-CVYpLgLQwKZoceC2CdbmPccN5E-TIJr9IuWVgTxE13mDmea4kVq0uOGeCk2CJOAcMGuxdHpk0QPL5VRK9uGHR7DZ52a2Zpfbbt5pzG00qT8mFwcYYuqHDLH7z_oFlmBy_A |
| CitedBy_id | crossref_primary_10_14778_3725688_3725701 crossref_primary_10_1007_s11128_025_04828_0 crossref_primary_10_1140_epjqt_s40507_025_00351_4 crossref_primary_10_1103_PhysRevResearch_7_033074 crossref_primary_10_1038_s41534_025_01033_w crossref_primary_10_1103_PRXQuantum_5_040334 crossref_primary_10_1145_3718349 crossref_primary_10_22331_q_2025_06_18_1775 crossref_primary_10_1103_rsrk_c7yg crossref_primary_10_1103_x1rk_yg29 |
| Cites_doi | 10.1103/PhysRevResearch.2.033042 10.1109/QCE57702.2023.00107 10.1103/PhysRevLett.124.130501 10.1103/PhysRevLett.113.030501 10.1103/RevModPhys.95.045005 10.1038/s41586-022-05434-1 10.1007/s11128-021-03130-z 10.22331/q-2019-09-02-183 10.1016/j.physleta.2020.126353 10.1103/PhysRevA.106.062428 10.1098/rspa.1996.0136 10.1103/PhysRevLett.120.050505 10.1007/978-3-642-23354-8 10.1103/PRXQuantum.4.040311 10.1103/PhysRevX.10.011022 10.1007/978-3-642-11470-0 10.1103/PRXQuantum.3.010331 10.3390/e17041946 10.1007/BF01608499 10.22331/q-2022-09-19-809 10.1016/j.aop.2014.06.013 10.1109/QCE57702.2023.00103 10.48550/arXiv.1203.5813 10.1088/2632-2153/abc609 10.1103/PhysRevA.57.830 10.1088/2058-9565/abe989 10.1038/s41586-023-06927-3 10.1038/npjqi.2015.10 10.1063/1.1499754 10.1103/PhysRevLett.104.050504 10.1109/FOCS54457.2022.00117 10.1038/s41467-023-42482-1 10.48550/arXiv.2307.03280 10.1126/science.1131563 10.22331/q-2018-10-19-102 10.7907/059V-MG69 10.25910/x8xw-9077 10.1103/PRXQuantum.4.020332 10.48550/arXiv.2101.04125 10.1103/PRXQuantum.2.040101 10.1103/RevModPhys.55.601 10.22331/q-2021-12-02-595 10.1103/PhysRevX.9.041031 10.1002/wcms.1481 10.1007/s11432-020-2881-9 10.1137/S0097539799359385 10.1145/321879.321884 10.1109/ACCESS.2021.3118544 10.15581/10171/63013 10.4153/CJM-1965-045-4 10.1109/TIT.2018.2879937 10.1070/RM1997v052n06ABEH002155 10.48550/arXiv.2202.11239 10.1038/s41534-018-0106-y 10.1063/1.522979 10.48550/arXiv.2107.13589 10.1109/TIT.2022.3143452 10.1088/2058-9565/aad1f7 10.1103/PhysRevA.85.022317 10.7907/AHMQ-EG82 10.1109/TIT.2021.3097347 10.1145/3566097.3567934 10.1109/TIT.2021.3122352 10.1109/TIT.2009.2018339 10.1103/PhysRevA.92.032309 10.1038/s41534-021-00448-5 10.1109/ACCESS.2021.3089829 10.1103/PhysRevA.56.33 10.48550/arXiv.2303.14237 10.1103/RevModPhys.87.307 10.1103/PhysRevLett.119.030501 10.1016/S0003-4916(02)00019-2 10.1103/PhysRevA.108.022401 10.1103/PhysRevLett.98.190504 10.1038/s41598-021-81138-2 10.1109/SFCS.1994.365700 10.1109/TC.2019.2948612 10.1109/tqe.2021.3113936 10.1103/PhysRevA.102.042411 10.48550/arXiv.1310.0863 10.22331/q-2021-11-22-585 10.22331/q-2020-08-24-310 10.1088/1367-2630/11/1/013061 10.1007/s42484-020-00015-9 10.22331/q-2023-09-26-1123 10.1103/PhysRevA.80.052312 10.1145/3505637 10.1109/ACCESS.2018.2808373 10.1038/s41586-024-07107-7 10.48550/arXiv.2307.01241 10.1103/PhysRevA.76.022318 10.1103/PRXQuantum.4.040344 10.1126/science.1145699 10.1016/j.tcs.2014.05.025 10.1109/4234.905935 10.1103/PhysRevLett.111.200501 10.48550/arXiv.1312.6229 10.1038/scientificamerican1070-120 10.1016/j.physrep.2008.09.003 10.1038/s41586-022-05424-3 10.1126/science.abe8770 10.1103/PhysRevX.5.031043 10.1088/2058-9565/aa955a 10.1103/PhysRevX.13.031007 10.1038/s41586-022-04566-8 10.1038/s41567-024-02479-z 10.1109/ITW54588.2022.9965902 10.1145/3519935.3520017 10.48550/arXiv.quant-ph/9811052 10.1109/ITW.1998.706440 10.5445/IR/1000105563 10.1038/s41467-022-28767-x 10.1038/s41586-019-1666-5 10.1016/S0003-4916(02)00018-0 10.1145/3406325.3451005 10.1109/TQE.2022.3196609 10.1038/s41598-017-11266-1 10.1103/PhysRevLett.128.080505 10.1088/1367-2630/16/6/063038 10.1103/PhysRevA.88.062329 10.1140/epjqt/s40507-022-00151-0 10.1103/PhysRevLett.86.5188 10.1109/49.924874 10.1088/2058-9565/ace64d 10.1038/nphys1157 10.1109/TIT.2014.2313559 10.1126/science.abn7293 10.1016/0022-0000(88)90039-6 10.1109/TIT.2004.834737 10.1103/PhysRevA.76.012305 10.1103/PhysRevLett.127.180501 10.1038/s41567-023-02042-2 10.1109/ISIT.2014.6874997 10.1002/qute.201870015 10.1109/18.412683 10.1038/npjqi.2015.23 10.22331/q-2021-07-06-497 10.1109/QCE53715.2022.00047 10.48550/arXiv.quant-ph/9807006 10.1109/JSAC.1984.1146031 10.1017/CBO9780511807213 10.1103/PhysRevA.52.R2493 10.48550/arXiv.2211.03288 10.7907/rzr7-dt72 10.1109/18.910572 10.1063/1.5115814 10.1103/PhysRevLett.67.661 10.1103/PhysRevA.86.032324 10.48550/arXiv.2303.15933 10.1038/s41534-021-00431-0 10.1103/PhysRevA.78.012347 10.1007/BF02650179 10.1103/RevModPhys.94.015004 10.22331/q-2023-05-15-1005 10.4233/uuid:07d93422-d07c-492e-8d65-592344e01936 10.1016/C2009-0-27609-4 10.48550/arXiv.2004.00814 10.22331/q-2023-02-21-929 10.1088/1367-2630/aaf29e 10.1038/s41467-021-22274-1 10.1103/PhysRevLett.122.200501 10.1103/PhysRevResearch.2.043423 10.22331/q-2018-08-06-79 10.1017/CBO9780511976667 10.1103/PhysRevA.102.012401 10.22331/q-2021-10-14-562 10.1088/1742-6596/1071/1/012022 10.1103/PhysRevResearch.5.033055 10.1103/PhysRevA.102.032411 10.1103/PhysRevA.73.012340 10.1109/TIT.2015.2422294 10.1126/science.279.5349.342 10.1103/PhysRevA.54.1098 10.1088/1367-2630/17/3/035017 10.1038/s41586-022-04725-x 10.1063/1.4903136 10.1103/PhysRevLett.97.180501 10.1088/1367-2630/14/12/123011 10.1038/s41586-020-2667-0 10.1103/PhysRevA.102.012419 10.1103/PhysRevResearch.2.023230 10.48550/arXiv.1307.1740 10.1103/PhysRevResearch.5.013035 10.1103/PhysRevLett.98.140506 10.1038/s41534-019-0168-5 10.1103/PhysRevA.55.900 10.1103/PhysRevA.90.032326 10.1098/rspa.2008.0439 10.48550/arXiv.0801.1241 10.1109/ACCESS.2020.3025619 10.1103/PhysRevLett.123.020501 10.1016/0024-3795(75)90075-0 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.22331/q-2024-10-10-1498 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2521-327X |
| ExternalDocumentID | oai_doaj_org_article_039405796d054e2691f71acca3bb07c9 10_22331_q_2024_10_10_1498 |
| GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
| ID | FETCH-LOGICAL-c2028-29777fd2fb60adb4b80f9c97eb4aa4187df36fe642ef32ac5570e5fb8846fa2f3 |
| IEDL.DBID | DOA |
| ISSN | 2521-327X |
| IngestDate | Fri Oct 03 12:50:46 EDT 2025 Sat Nov 29 03:16:38 EST 2025 Tue Nov 18 20:51:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2028-29777fd2fb60adb4b80f9c97eb4aa4187df36fe642ef32ac5570e5fb8846fa2f3 |
| OpenAccessLink | https://doaj.org/article/039405796d054e2691f71acca3bb07c9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_039405796d054e2691f71acca3bb07c9 crossref_primary_10_22331_q_2024_10_10_1498 crossref_citationtrail_10_22331_q_2024_10_10_1498 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-10 |
| PublicationDateYYYYMMDD | 2024-10-10 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Quantum (Vienna, Austria) |
| PublicationYear | 2024 |
| Publisher | Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften |
| Publisher_xml | – name: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften |
| References | 110 111 112 113 114 115 116 117 118 119 10 11 12 13 14 15 16 17 18 19 120 0 121 1 122 2 123 3 124 4 125 5 126 6 127 7 128 8 129 9 20 21 22 23 24 25 26 27 28 29 130 131 132 133 134 135 136 137 138 139 30 31 32 33 34 35 36 37 38 39 140 141 142 143 144 145 146 147 148 149 40 41 42 43 44 45 46 47 48 49 150 151 152 153 154 155 156 157 158 159 50 51 52 53 54 55 56 57 58 59 160 161 162 163 164 165 166 167 168 169 60 61 62 63 64 65 66 67 68 69 170 171 172 173 174 175 176 177 178 179 70 71 72 73 74 75 76 77 78 79 180 181 182 183 184 185 186 187 188 189 80 81 82 83 84 85 86 87 88 89 190 191 192 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
| References_xml | – ident: 111 doi: 10.1103/PhysRevResearch.2.033042 – ident: 95 doi: 10.1109/QCE57702.2023.00107 – ident: 106 doi: 10.1103/PhysRevLett.124.130501 – ident: 139 doi: 10.1103/PhysRevLett.113.030501 – ident: 55 doi: 10.1103/RevModPhys.95.045005 – ident: 50 doi: 10.1038/s41586-022-05434-1 – ident: 105 doi: 10.1007/s11128-021-03130-z – ident: 170 doi: 10.22331/q-2019-09-02-183 – ident: 173 doi: 10.1016/j.physleta.2020.126353 – ident: 82 doi: 10.1103/PhysRevA.106.062428 – ident: 63 doi: 10.1098/rspa.1996.0136 – ident: 32 doi: 10.1103/PhysRevLett.120.050505 – ident: 73 doi: 10.1007/978-3-642-23354-8 – ident: 83 doi: 10.1103/PRXQuantum.4.040311 – ident: 33 doi: 10.1103/PhysRevX.10.011022 – ident: 18 doi: 10.1007/978-3-642-11470-0 – ident: 86 doi: 10.1103/PRXQuantum.3.010331 – ident: 156 doi: 10.3390/e17041946 – ident: 75 doi: 10.1007/BF01608499 – ident: 189 doi: 10.22331/q-2022-09-19-809 – ident: 138 doi: 10.1016/j.aop.2014.06.013 – ident: 54 doi: 10.1109/QCE57702.2023.00103 – ident: 1 doi: 10.48550/arXiv.1203.5813 – ident: 163 doi: 10.1088/2632-2153/abc609 – ident: 52 doi: 10.1103/PhysRevA.57.830 – ident: 19 doi: 10.1088/2058-9565/abe989 – ident: 51 doi: 10.1038/s41586-023-06927-3 – ident: 99 doi: 10.1038/npjqi.2015.10 – ident: 45 doi: 10.1063/1.1499754 – ident: 98 doi: 10.1103/PhysRevLett.104.050504 – ident: 121 doi: 10.1109/FOCS54457.2022.00117 – ident: 181 doi: 10.1038/s41467-023-42482-1 – ident: 165 doi: 10.48550/arXiv.2307.03280 – ident: 56 doi: 10.1126/science.1131563 – ident: 132 doi: 10.22331/q-2018-10-19-102 – ident: 148 doi: 10.7907/059V-MG69 – ident: 142 doi: 10.25910/x8xw-9077 – ident: 135 doi: 10.1103/PRXQuantum.4.020332 – ident: 141 doi: 10.48550/arXiv.2101.04125 – ident: 38 doi: 10.1103/PRXQuantum.2.040101 – ident: 145 doi: 10.1103/RevModPhys.55.601 – ident: 88 doi: 10.22331/q-2021-12-02-595 – ident: 140 doi: 10.1103/PhysRevX.9.041031 – ident: 7 doi: 10.1002/wcms.1481 – ident: 20 doi: 10.1007/s11432-020-2881-9 – ident: 67 doi: 10.1137/S0097539799359385 – ident: 112 doi: 10.1145/321879.321884 – ident: 130 doi: 10.1109/ACCESS.2021.3118544 – ident: 57 doi: 10.15581/10171/63013 – ident: 94 doi: 10.4153/CJM-1965-045-4 – ident: 159 doi: 10.1109/TIT.2018.2879937 – ident: 191 doi: 10.1070/RM1997v052n06ABEH002155 – ident: 186 doi: 10.48550/arXiv.2202.11239 – ident: 44 doi: 10.1038/s41534-018-0106-y – ident: 74 doi: 10.1063/1.522979 – ident: 134 doi: 10.48550/arXiv.2107.13589 – ident: 114 doi: 10.1109/TIT.2022.3143452 – ident: 161 doi: 10.1088/2058-9565/aad1f7 – ident: 153 doi: 10.1103/PhysRevA.85.022317 – ident: 147 doi: 10.7907/AHMQ-EG82 – ident: 120 doi: 10.1109/TIT.2021.3097347 – ident: 180 doi: 10.1145/3566097.3567934 – ident: 137 doi: 10.1109/TIT.2021.3122352 – ident: 39 doi: 10.1109/TIT.2009.2018339 – ident: 155 doi: 10.1103/PhysRevA.92.032309 – ident: 28 doi: 10.1038/s41534-021-00448-5 – ident: 40 doi: 10.1109/ACCESS.2021.3089829 – ident: 89 doi: 10.1103/PhysRevA.56.33 – ident: 101 doi: 10.48550/arXiv.2303.14237 – ident: 42 doi: 10.1103/RevModPhys.87.307 – ident: 167 doi: 10.1103/PhysRevLett.119.030501 – ident: 152 doi: 10.1016/S0003-4916(02)00019-2 – ident: 65 doi: 10.1103/PhysRevA.108.022401 – ident: 46 doi: 10.1103/PhysRevLett.98.190504 – ident: 150 doi: 10.1038/s41598-021-81138-2 – ident: 2 doi: 10.1109/SFCS.1994.365700 – ident: 162 doi: 10.1109/TC.2019.2948612 – ident: 128 doi: 10.1109/tqe.2021.3113936 – ident: 171 doi: 10.1103/PhysRevA.102.042411 – ident: 109 doi: 10.48550/arXiv.1310.0863 – ident: 36 doi: 10.22331/q-2021-11-22-585 – ident: 144 – ident: 174 doi: 10.22331/q-2020-08-24-310 – ident: 183 doi: 10.1088/1367-2630/11/1/013061 – ident: 164 doi: 10.1007/s42484-020-00015-9 – ident: 85 doi: 10.22331/q-2023-09-26-1123 – ident: 47 doi: 10.1103/PhysRevA.80.052312 – ident: 96 doi: 10.1145/3505637 – ident: 188 doi: 10.1109/ACCESS.2018.2808373 – ident: 122 doi: 10.1038/s41586-024-07107-7 – ident: 166 doi: 10.48550/arXiv.2307.01241 – ident: 71 doi: 10.1103/PhysRevA.76.022318 – ident: 182 doi: 10.1103/PRXQuantum.4.040344 – ident: 79 doi: 10.1126/science.1145699 – ident: 4 doi: 10.1016/j.tcs.2014.05.025 – ident: 118 doi: 10.1109/4234.905935 – ident: 154 doi: 10.1103/PhysRevLett.111.200501 – ident: 160 doi: 10.48550/arXiv.1312.6229 – ident: 146 doi: 10.1038/scientificamerican1070-120 – ident: 21 doi: 10.1016/j.physrep.2008.09.003 – ident: 8 doi: 10.1038/s41586-022-05424-3 – ident: 10 doi: 10.1126/science.abe8770 – ident: 136 doi: 10.1103/PhysRevX.5.031043 – ident: 100 doi: 10.1088/2058-9565/aa955a – ident: 64 doi: 10.1103/PhysRevX.13.031007 – ident: 49 doi: 10.1038/s41586-022-04566-8 – ident: 123 doi: 10.1038/s41567-024-02479-z – ident: 131 doi: 10.1109/ITW54588.2022.9965902 – ident: 37 doi: 10.1145/3519935.3520017 – ident: 61 doi: 10.48550/arXiv.quant-ph/9811052 – ident: 129 doi: 10.1109/ITW.1998.706440 – ident: 72 doi: 10.5445/IR/1000105563 – ident: 15 doi: 10.1038/s41467-022-28767-x – ident: 9 doi: 10.1038/s41586-019-1666-5 – ident: 30 doi: 10.1016/S0003-4916(02)00018-0 – ident: 119 doi: 10.1145/3406325.3451005 – ident: 104 doi: 10.1109/TQE.2022.3196609 – ident: 168 doi: 10.1038/s41598-017-11266-1 – ident: 175 doi: 10.1103/PhysRevLett.128.080505 – ident: 157 doi: 10.1088/1367-2630/16/6/063038 – ident: 92 doi: 10.1103/PhysRevA.88.062329 – ident: 87 doi: 10.1140/epjqt/s40507-022-00151-0 – ident: 16 doi: 10.1103/PhysRevLett.86.5188 – ident: 126 doi: 10.1109/49.924874 – ident: 178 doi: 10.1088/2058-9565/ace64d – ident: 17 doi: 10.1038/nphys1157 – ident: 53 doi: 10.1109/TIT.2014.2313559 – ident: 12 doi: 10.1126/science.abn7293 – ident: 179 doi: 10.1016/0022-0000(88)90039-6 – ident: 35 doi: 10.1109/TIT.2004.834737 – ident: 48 doi: 10.1103/PhysRevA.76.012305 – ident: 11 doi: 10.1103/PhysRevLett.127.180501 – ident: 84 doi: 10.1038/s41567-023-02042-2 – ident: 108 doi: 10.1109/ISIT.2014.6874997 – ident: 190 doi: 10.1002/qute.201870015 – ident: 125 doi: 10.1109/18.412683 – ident: 3 doi: 10.1038/npjqi.2015.23 – ident: 110 doi: 10.22331/q-2021-07-06-497 – ident: 133 doi: 10.1109/QCE53715.2022.00047 – ident: 81 doi: 10.48550/arXiv.quant-ph/9807006 – ident: 192 doi: 10.1109/JSAC.1984.1146031 – ident: 187 doi: 10.1017/CBO9780511807213 – ident: 23 doi: 10.1103/PhysRevA.52.R2493 – ident: 103 doi: 10.48550/arXiv.2211.03288 – ident: 29 doi: 10.7907/rzr7-dt72 – ident: 116 doi: 10.1109/18.910572 – ident: 22 doi: 10.1063/1.5115814 – ident: 5 doi: 10.1103/PhysRevLett.67.661 – ident: 24 doi: 10.1103/PhysRevA.86.032324 – ident: 43 doi: 10.48550/arXiv.2303.15933 – ident: 70 doi: 10.1038/s41534-021-00431-0 – ident: 80 doi: 10.1103/PhysRevA.78.012347 – ident: 0 doi: 10.1007/BF02650179 – ident: 6 doi: 10.1103/RevModPhys.94.015004 – ident: 127 doi: 10.22331/q-2023-05-15-1005 – ident: 90 doi: 10.4233/uuid:07d93422-d07c-492e-8d65-592344e01936 – ident: 115 doi: 10.1016/C2009-0-27609-4 – ident: 93 doi: 10.48550/arXiv.2004.00814 – ident: 151 doi: 10.22331/q-2023-02-21-929 – ident: 176 doi: 10.1088/1367-2630/aaf29e – ident: 31 doi: 10.1038/s41467-021-22274-1 – ident: 169 doi: 10.1103/PhysRevLett.122.200501 – ident: 97 doi: 10.1103/PhysRevResearch.2.043423 – ident: 25 doi: 10.22331/q-2018-08-06-79 – ident: 14 doi: 10.1017/CBO9780511976667 – ident: 77 doi: 10.1103/PhysRevA.102.012401 – ident: 124 doi: 10.22331/q-2021-10-14-562 – ident: 184 doi: 10.1088/1742-6596/1071/1/012022 – ident: 107 doi: 10.1103/PhysRevResearch.5.033055 – ident: 177 doi: 10.1103/PhysRevA.102.032411 – ident: 69 doi: 10.1103/PhysRevA.73.012340 – ident: 41 doi: 10.1109/TIT.2015.2422294 – ident: 68 doi: 10.1126/science.279.5349.342 – ident: 62 doi: 10.1103/PhysRevA.54.1098 – ident: 158 doi: 10.1088/1367-2630/17/3/035017 – ident: 13 doi: 10.1038/s41586-022-04725-x – ident: 66 doi: 10.1063/1.4903136 – ident: 34 doi: 10.1103/PhysRevLett.97.180501 – ident: 60 doi: 10.1088/1367-2630/14/12/123011 – ident: 91 doi: 10.1038/s41586-020-2667-0 – ident: 113 doi: 10.1103/PhysRevA.102.012419 – ident: 172 doi: 10.1103/PhysRevResearch.2.023230 – ident: 102 doi: 10.48550/arXiv.1307.1740 – ident: 185 doi: 10.1103/PhysRevResearch.5.013035 – ident: 143 doi: 10.1103/PhysRevLett.98.140506 – ident: 27 doi: 10.1038/s41534-019-0168-5 – ident: 58 doi: 10.1103/PhysRevA.55.900 – ident: 59 doi: 10.1103/PhysRevA.90.032326 – ident: 78 doi: 10.1098/rspa.2008.0439 – ident: 117 doi: 10.48550/arXiv.0801.1241 – ident: 26 doi: 10.1109/ACCESS.2020.3025619 – ident: 149 doi: 10.1103/PhysRevLett.123.020501 – ident: 76 doi: 10.1016/0024-3795(75)90075-0 |
| SSID | ssj0002876684 |
| Score | 2.2705564 |
| Snippet | Quantum technologies have the potential to solve certain computationally hard problems with polynomial or super-polynomial speedups when compared to classical... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 1498 |
| Title | Decoding algorithms for surface codes |
| URI | https://doaj.org/article/039405796d054e2691f71acca3bb07c9 |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2521-327X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002876684 issn: 2521-327X databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2521-327X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002876684 issn: 2521-327X databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcCCQIAoL2WACUWNHTe2Rx6tWKgYQOpm-XHmodLSpmXkt3NOQikLLEhRhshJnLtT7jsn932EnILBIFIAqVTUpRgULLXARUqV9YWjeRd8LTYhBgM5HKq7Famv-E9YTQ9cG66TRenu2DDpEVwAKxQNghq8b25tJlzVupcJtVJMvVRLRqIoJK-7ZDAD5rQzxYBgPL524saV_JGJVgj7q8zS3yKbDSRMLuqpbJM1GO-Qs2usC2NeSczocYIV_NNrmSDATMrFLBgHSexFL3fJQ793f3WTNpIGqWNxHYsh3BLBs2CLzHjLrcyCckqA5cZwKoUPeREAiwIIOTMuEmRBN1iJMCEYFvI90hpPxrBPEuFlZlRQ3NiCW2DWOwQTXeq7ynGThTahX4-nXcP3HWUnRhpxf2USPdXRJLr6Dq2jSdrkfHnOW8128evoy2i15cjIVF0dQP_pxn_6L_8d_MdFDsnGt3OPSGs-W8AxWXfv8-dydlKFBu5vP3qfHam7MA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+algorithms+for+surface+codes&rft.jtitle=Quantum+%28Vienna%2C+Austria%29&rft.au=Antonio+deMarti+iOlius&rft.au=Patricio+Fuentes&rft.au=Rom%C3%A1n+Or%C3%BAs&rft.au=Pedro+M.+Crespo&rft.date=2024-10-10&rft.pub=Verein+zur+F%C3%B6rderung+des+Open+Access+Publizierens+in+den+Quantenwissenschaften&rft.eissn=2521-327X&rft.volume=8&rft.spage=1498&rft_id=info:doi/10.22331%2Fq-2024-10-10-1498&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_039405796d054e2691f71acca3bb07c9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2521-327X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2521-327X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2521-327X&client=summon |