Similarity-based parameter transferability in the quantum approximate optimization algorithm

The quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced combinatorial optimization. A near-optimal solution to the combinatorial optimization problem is achieved by preparing a quantum state through the op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in Quantum Science and Technology Jg. 2
Hauptverfasser: Galda, Alexey, Gupta, Eesh, Falla, Jose, Liu, Xiaoyuan, Lykov, Danylo, Alexeev, Yuri, Safro, Ilya
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Frontiers Media S.A 13.07.2023
Schlagworte:
ISSN:2813-2181, 2813-2181
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced combinatorial optimization. A near-optimal solution to the combinatorial optimization problem is achieved by preparing a quantum state through the optimization of quantum circuit parameters. Optimal QAOA parameter concentration effects for special MaxCut problem instances have been observed, but a rigorous study of the subject is still lacking. In this work we show clustering of optimal QAOA parameters around specific values; consequently, successful transferability of parameters between different QAOA instances can be explained and predicted based on local properties of the graphs, including the type of subgraphs (lightcones) from which graphs are composed as well as the overall degree of nodes in the graph (parity). We apply this approach to several instances of random graphs with a varying number of nodes as well as parity and show that one can use optimal donor graph QAOA parameters as near-optimal parameters for larger acceptor graphs with comparable approximation ratios. This work presents a pathway to identifying classes of combinatorial optimization instances for which variational quantum algorithms such as QAOA can be substantially accelerated.
AbstractList The quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced combinatorial optimization. A near-optimal solution to the combinatorial optimization problem is achieved by preparing a quantum state through the optimization of quantum circuit parameters. Optimal QAOA parameter concentration effects for special MaxCut problem instances have been observed, but a rigorous study of the subject is still lacking. In this work we show clustering of optimal QAOA parameters around specific values; consequently, successful transferability of parameters between different QAOA instances can be explained and predicted based on local properties of the graphs, including the type of subgraphs (lightcones) from which graphs are composed as well as the overall degree of nodes in the graph (parity). We apply this approach to several instances of random graphs with a varying number of nodes as well as parity and show that one can use optimal donor graph QAOA parameters as near-optimal parameters for larger acceptor graphs with comparable approximation ratios. This work presents a pathway to identifying classes of combinatorial optimization instances for which variational quantum algorithms such as QAOA can be substantially accelerated.
Author Galda, Alexey
Liu, Xiaoyuan
Lykov, Danylo
Falla, Jose
Gupta, Eesh
Safro, Ilya
Alexeev, Yuri
Author_xml – sequence: 1
  givenname: Alexey
  surname: Galda
  fullname: Galda, Alexey
– sequence: 2
  givenname: Eesh
  surname: Gupta
  fullname: Gupta, Eesh
– sequence: 3
  givenname: Jose
  surname: Falla
  fullname: Falla, Jose
– sequence: 4
  givenname: Xiaoyuan
  surname: Liu
  fullname: Liu, Xiaoyuan
– sequence: 5
  givenname: Danylo
  surname: Lykov
  fullname: Lykov, Danylo
– sequence: 6
  givenname: Yuri
  surname: Alexeev
  fullname: Alexeev, Yuri
– sequence: 7
  givenname: Ilya
  surname: Safro
  fullname: Safro, Ilya
BookMark eNp9kMlqwzAQhkVJoWmaF-jJL-BUizcdS-gSCPTQHAtirCVRsC1HVqDp01dZKKWHnuZnhv9j-G7RqHOdRuie4BljFX8wfjeEGcWUzQjFmJf5FRrTirCUkoqMfuUbNB2GLcaYcsrKnI7Rx7ttbQPehkNaw6BV0oOHVgftk-ChG4z2UNsm3hPbJWGjk90eurBvE-h77z5tC0Enrg-R8wXBui6BZu0icNPeoWsDzaCnlzlBq-en1fw1Xb69LOaPy1TGp_MUmMZG1pk2DGeMZzgGxnlREl3XVcEKVZlaYZxpXpVKK0ZoyYkhcUex4myCFmescrAVvY8v-YNwYMVp4fxagA9WNlqUkgPWmFGo84zWiueFKTKQUhKuFIXIomeW9G4YvDY_PILF0bY42RZH2-JiO5aqPyVpw8lFVGib_6rfnMuLMQ
CitedBy_id crossref_primary_10_1038_s41534_024_00906_w
crossref_primary_10_1088_2058_9565_ad895c
crossref_primary_10_1103_PhysRevA_111_022418
crossref_primary_10_1007_s42484_024_00178_9
Cites_doi 10.22331/q-2018-08-06-79
10.1093/oso/9780198805090.001.0001
10.1109/mc.2019.2908942
10.1103/physreva.61.052311
10.1103/prxquantum.2.017001
10.1038/s41467-021-27045-6
10.1103/PhysRevX.10.021067
10.1063/5.0123765
10.1002/wcms.1481
10.1007/s11128-021-03298-4
10.1038/s41467-022-35364-5
10.1145/3425607
10.1103/PhysRevA.104.L010401
10.1002/qute.201900029
10.1038/s41586-019-1666-5
10.1088/2058-9565/ab8c2b
10.3389/fphy.2020.586374
10.1016/s0020-0255(00)00052-9
10.3390/a12020034
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/frqst.2023.1200975
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2813-2181
ExternalDocumentID oai_doaj_org_article_7c9a0e032ab542bd956f64accc19dd2a
10_3389_frqst_2023_1200975
GroupedDBID 9T4
AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c2025-a3e0fcb4ef3043940ef3399671ebb8636d8fbd004e987ded312791f1bd020d93
IEDL.DBID DOA
ISSN 2813-2181
IngestDate Fri Oct 03 12:38:46 EDT 2025
Tue Nov 18 20:58:32 EST 2025
Sat Nov 29 05:35:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2025-a3e0fcb4ef3043940ef3399671ebb8636d8fbd004e987ded312791f1bd020d93
OpenAccessLink https://doaj.org/article/7c9a0e032ab542bd956f64accc19dd2a
ParticipantIDs doaj_primary_oai_doaj_org_article_7c9a0e032ab542bd956f64accc19dd2a
crossref_primary_10_3389_frqst_2023_1200975
crossref_citationtrail_10_3389_frqst_2023_1200975
PublicationCentury 2000
PublicationDate 2023-7-13
PublicationDateYYYYMMDD 2023-07-13
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-7-13
  day: 13
PublicationDecade 2020
PublicationTitle Frontiers in Quantum Science and Technology
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Khairy (B17) 2020
Brandao (B7) 2018
Egger (B8) 2020
Herman (B12) 2022
Wurtz (B30) 2021
Outeiral (B21) 2021; 11
Hadfield (B11) 2019; 12
Preskill (B22) 2018; 2
Shaydulin (B23) 2021; 20
Zhou (B31) 2020; 10
Shaydulin (B24)
Wang (B29) 2021; 12
Lykov (B19) 2020
Shaydulin (B26); 2
Arute (B4) 2019; 574
Biamonte (B6) 2017
Streif (B27) 2020; 5
Kardashin (B16) 2021; 8
Hogg (B13) 2000; 128
Anschuetz (B3) 2022; 13
Alexeev (B2) 2021; 2
Hogg (B14) 2000; 61
Akshay (B1) 2021
Joseph (B15) 2023; 30
Ushijima-Mwesigwa (B28) 2021; 2
Gurobi Optimization (B10) 2021
Farhi (B9) 2014
Lykov (B18) 2021
Basso (B5) 2022
Newman (B20) 2018
Shaydulin (B25); 52
References_xml – volume-title: Tensor networks in a nutshell
  year: 2017
  ident: B6
– volume-title: Tensor network quantum simulator with step-dependent parallelization
  year: 2020
  ident: B19
– volume: 2
  start-page: 79
  year: 2018
  ident: B22
  article-title: Quantum computing in the nisq era and beyond
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume-title: Networks
  year: 2018
  ident: B20
  doi: 10.1093/oso/9780198805090.001.0001
– volume-title: For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances
  year: 2018
  ident: B7
– volume: 52
  start-page: 18
  ident: B25
  article-title: A hybrid approach for solving optimization problems on small quantum computers
  publication-title: Computer
  doi: 10.1109/mc.2019.2908942
– volume-title: Gurobi optimizer reference manual
  year: 2021
  ident: B10
– volume: 61
  start-page: 052311
  year: 2000
  ident: B14
  article-title: Quantum search heuristics
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.61.052311
– volume: 2
  start-page: 017001
  year: 2021
  ident: B2
  article-title: Quantum computer systems for scientific discovery
  publication-title: PRX Quantum
  doi: 10.1103/prxquantum.2.017001
– start-page: 7:1
  volume-title: 17th conference on the theory of quantum computation, communication and cryptography (TQC 2022)Leibniz international proceedings in informatics (LIPIcs)
  year: 2022
  ident: B5
  article-title: The quantum approximate optimization algorithm at high depth for MaxCut on large-girth regular graphs and the sherrington-kirkpatrick model
– volume-title: A survey of quantum computing for finance
  year: 2022
  ident: B12
– volume: 12
  start-page: 6961
  year: 2021
  ident: B29
  article-title: Noise-induced barren plateaus in variational quantum algorithms
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27045-6
– volume: 10
  start-page: 021067
  year: 2020
  ident: B31
  article-title: Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.10.021067
– volume: 30
  start-page: 010501
  year: 2023
  ident: B15
  article-title: Quantum computing for fusion energy science applications
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0123765
– start-page: 1
  ident: B24
  article-title: Multistart methods for quantum approximate optimization
– volume: 11
  start-page: e1481
  year: 2021
  ident: B21
  article-title: The prospects of quantum computing in computational molecular biology
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1481
– volume: 20
  start-page: 359
  year: 2021
  ident: B23
  article-title: Classical symmetries and the quantum approximate optimization algorithm
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-021-03298-4
– start-page: 2367
  year: 2020
  ident: B17
  article-title: Learning to optimize variational quantum circuits to solve combinatorial problems
– volume: 13
  start-page: 7760
  year: 2022
  ident: B3
  article-title: Beyond barren plateaus: Quantum variational algorithms are swamped with traps
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35364-5
– volume: 2
  start-page: 1
  year: 2021
  ident: B28
  article-title: Multilevel combinatorial optimization across quantum architectures
  publication-title: ACM Trans. Quantum Comput.
  doi: 10.1145/3425607
– volume-title: Parameter concentration in quantum approximate optimization
  year: 2021
  ident: B1
  doi: 10.1103/PhysRevA.104.L010401
– volume-title: A quantum approximate optimization algorithm
  year: 2014
  ident: B9
– volume: 2
  start-page: 1900029
  ident: B26
  article-title: Network community detection on small quantum computers
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.201900029
– volume-title: The fixed angle conjecture for QAOA on regular MaxCut graphs
  year: 2021
  ident: B30
– volume: 574
  start-page: 505
  year: 2019
  ident: B4
  article-title: Quantum supremacy using a programmable superconducting processor
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– volume: 5
  start-page: 034008
  year: 2020
  ident: B27
  article-title: Training the quantum approximate optimization algorithm without access to a quantum processing unit
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ab8c2b
– volume: 8
  start-page: 586374
  year: 2021
  ident: B16
  article-title: Quantum machine learning tensor network states
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2020.586374
– volume-title: Qtensor
  year: 2021
  ident: B18
– volume: 128
  start-page: 181
  year: 2000
  ident: B13
  article-title: Quantum optimization
  publication-title: Inf. Sci.
  doi: 10.1016/s0020-0255(00)00052-9
– year: 2020
  ident: B8
  article-title: Warm-starting quantum optimization
– volume: 12
  start-page: 34
  year: 2019
  ident: B11
  article-title: From the Quantum Approximate Optimization Algorithm to a quantum alternating operator ansatz
  publication-title: Algorithms
  doi: 10.3390/a12020034
SSID ssj0002923752
Score 2.2251234
Snippet The quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms parameter transferability
quantum approximate optimization algorithm
quantum computing
quantum optimization
quantum software
Title Similarity-based parameter transferability in the quantum approximate optimization algorithm
URI https://doaj.org/article/7c9a0e032ab542bd956f64accc19dd2a
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2813-2181
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002923752
  issn: 2813-2181
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2813-2181
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002923752
  issn: 2813-2181
  databaseCode: M~E
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIouKbHLxJtUm6TXNUWfGiCO5hD0LJUwu2q_sQvfjbnUmr9KQXL6WENIRvwuSbZvINIcd4FMU01ndJWYAAJZjECG8SdJeZd05L62KxCXl7W4zH6q5X6gtzwlp54Ba4M2mVTn0quDaDjBsHfD7kmbbWMuUcj9QolaoXTKEP5sBb5IC3t2QgClNnYfo6w9xJLk4ZnghgYmFvJ-oJ9sed5WqdrHWUkJ63U9kgS77ZJA_3VV1B1AkkOcGdxlEU6a4xeYXOI9n001Zi-4NWDQUaR18XgNKiplEm_L0CKurpBDxC3V21pPr5cQIDPtVbZHQ1HF1eJ10lhMRyrDerhU-DNZkPIl5lTeEFmEUumTemyEXuimAcrHevCum8E4xLxQKDNp46JbbJcjNp_A6hYBcjgrNSZz5TqQP3lucahmDGSy0Gu4R9g1LaTiUci1U8lxAtIJBlBLJEIMsOyF1y8vPNS6uR8WvvC8T6pyfqW8cGsHrZWb38y-p7_zHIPlnFieGfWiYOyPJ8uvCHZMW-zavZ9CguKHjefA6_AHpt1bM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Similarity-based+parameter+transferability+in+the+quantum+approximate+optimization+algorithm&rft.jtitle=Frontiers+in+Quantum+Science+and+Technology&rft.au=Galda%2C+Alexey&rft.au=Gupta%2C+Eesh&rft.au=Falla%2C+Jose&rft.au=Liu%2C+Xiaoyuan&rft.date=2023-07-13&rft.issn=2813-2181&rft.eissn=2813-2181&rft.volume=2&rft_id=info:doi/10.3389%2Ffrqst.2023.1200975&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_frqst_2023_1200975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2813-2181&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2813-2181&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2813-2181&client=summon