Kraśkiewicz-Pragacz modules and some positivity properties of Schubert polynomials
We use the modules introduced by Kraśkiewicz and Pragacz (1987, 2004) to show some positivity propertiesof Schubert polynomials. We give a new proof to the classical fact that the product of two Schubert polynomialsis Schubert-positive, and also show a new result that the plethystic composition of a...
Uložené v:
| Vydané v: | Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings, 27th...; číslo Proceedings; s. 253 - 260 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
DMTCS
01.01.2015
Discrete Mathematics & Theoretical Computer Science |
| Edícia: | DMTCS Proceedings |
| Predmet: | |
| ISSN: | 1365-8050, 1462-7264, 1365-8050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We use the modules introduced by Kraśkiewicz and Pragacz (1987, 2004) to show some positivity propertiesof Schubert polynomials. We give a new proof to the classical fact that the product of two Schubert polynomialsis Schubert-positive, and also show a new result that the plethystic composition of a Schur function with a Schubertpolynomial is Schubert-positive. The present submission is an extended abstract on these results and the full versionof this work will be published elsewhere.
Nous employons les modules introduits par Kraśkiewicz et Pragacz (1987, 2004) et démontrons certainespropriétés de positivité des polynômes de Schubert: nous donnons une nouvelle preuve pour le fait classique quele produit de deux polynômes de Schubert est Schubert-positif; nous démontrons aussi un nouveau résultat que lacomposition plethystique d’une fonction de Schur avec un polynôme de Schubert est Schubert-positif. Cet article estun sommaire de ces résultats, et une version pleine de ce travail sera publée ailleurs. |
|---|---|
| AbstractList | We use the modules introduced by Kraśkiewicz and Pragacz (1987, 2004) to show some positivity propertiesof Schubert polynomials. We give a new proof to the classical fact that the product of two Schubert polynomialsis Schubert-positive, and also show a new result that the plethystic composition of a Schur function with a Schubertpolynomial is Schubert-positive. The present submission is an extended abstract on these results and the full versionof this work will be published elsewhere. We use the modules introduced by Kraśkiewicz and Pragacz (1987, 2004) to show some positivity propertiesof Schubert polynomials. We give a new proof to the classical fact that the product of two Schubert polynomialsis Schubert-positive, and also show a new result that the plethystic composition of a Schur function with a Schubertpolynomial is Schubert-positive. The present submission is an extended abstract on these results and the full versionof this work will be published elsewhere. Nous employons les modules introduits par Kraśkiewicz et Pragacz (1987, 2004) et démontrons certainespropriétés de positivité des polynômes de Schubert: nous donnons une nouvelle preuve pour le fait classique quele produit de deux polynômes de Schubert est Schubert-positif; nous démontrons aussi un nouveau résultat que lacomposition plethystique d’une fonction de Schur avec un polynôme de Schubert est Schubert-positif. Cet article estun sommaire de ces résultats, et une version pleine de ce travail sera publée ailleurs. |
| Author | Watanabe, Masaki |
| Author_xml | – sequence: 1 givenname: Masaki surname: Watanabe fullname: Watanabe, Masaki organization: Graduate School of Mathematical Sciences[Tokyo] |
| BackLink | https://hal.science/hal-01337821$$DView record in HAL |
| BookMark | eNpVUdtOAjEQbYwmKvrkD-yrMYu97NLtIyEqRBJN0OdmaKdQ3aWkRQ38it_jf7mAMfp0Zs6cOZnJOSWHi7BAQi4Y7RY9rqpr26xM6vKiEgfkhIlemVe0pId_6mNymtILpYyrQp6QyX2Er89Xjx_ebPLHCDMwm6wJ9q3GlMHCZik0mC1D8iv_7lfrbBnDEuPKt-PgsomZv03btlXU60VoPNTpjBy5FvD8Bzvk-fbmaTDMxw93o0F_nBtOOc0ZSKuUKzmXiAU6IYE7CVCiKlVl5FQBmClSgeDah3qVLTiVqsRCSKRGiQ4Z7X1tgBe9jL6BuNYBvN4RIc40tIeaGjW3yrHSVUoIXvCemEoLzkJJC4mOVrb1utx7zaH-ZzXsj_WWo0wIWXH2zlrt1V5rYkgpovtdYFTvctC7HPQ2B_ENxE1_KQ |
| ContentType | Journal Article Conference Proceeding |
| Copyright | Attribution |
| Copyright_xml | – notice: Attribution |
| DBID | AAYXX CITATION 1XC VOOES DOA |
| DOI | 10.46298/dmtcs.2483 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1365-8050 |
| EndPage | 260 |
| ExternalDocumentID | oai_doaj_org_article_2d9f15f893324263b7dafda5047ef08d oai:HAL:hal-01337821v1 10_46298_dmtcs_2483 |
| GroupedDBID | -~9 .4S .DC 29G 2WC 5GY 5VS 8FE 8FG AAFWJ AAYXX ABDBF ABJCF ABUWG ACGFO ACIWK ACUHS ADBBV ADQAK AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS B0M BAIFH BBTPI BCNDV BENPR BFMQW BGLVJ BPHCQ CCPQU CITATION EAP EBS ECS EDO EJD EMK EPL EST ESX GROUPED_DOAJ HCIFZ I-F IAO IBB ICD ITC J9A KQ8 KWQ L6V M7S MK~ ML~ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PV9 REM RNS RSU RZL TR2 TUS XSB ~8M 1XC VOOES |
| ID | FETCH-LOGICAL-c2020-1a7d99f5227ee4ef37a2f7aa5e9598c7b9aacbe03eaf48368d420795e437e0c93 |
| IEDL.DBID | DOA |
| ISSN | 1365-8050 1462-7264 |
| IngestDate | Fri Oct 03 12:52:14 EDT 2025 Sat Nov 29 15:10:33 EST 2025 Sat Nov 29 02:48:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Proceedings |
| Keywords | Schubert functors Kraśkiewicz-Pragacz modules Schubert polynomials Schubert calculus |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MeetingName | 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015) |
| MergedId | FETCHMERGED-LOGICAL-c2020-1a7d99f5227ee4ef37a2f7aa5e9598c7b9aacbe03eaf48368d420795e437e0c93 |
| OpenAccessLink | https://doaj.org/article/2d9f15f893324263b7dafda5047ef08d |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2d9f15f893324263b7dafda5047ef08d hal_primary_oai_HAL_hal_01337821v1 crossref_primary_10_46298_dmtcs_2483 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-01-01 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationSeriesTitle | DMTCS Proceedings |
| PublicationTitle | Discrete mathematics and theoretical computer science |
| PublicationYear | 2015 |
| Publisher | DMTCS Discrete Mathematics & Theoretical Computer Science |
| Publisher_xml | – name: DMTCS – name: Discrete Mathematics & Theoretical Computer Science |
| SSID | ssj0012947 ssib044734695 |
| Score | 1.9390905 |
| Snippet | We use the modules introduced by Kraśkiewicz and Pragacz (1987, 2004) to show some positivity propertiesof Schubert polynomials. We give a new proof to the... |
| SourceID | doaj hal crossref |
| SourceType | Open Website Open Access Repository Index Database |
| StartPage | 253 |
| SubjectTerms | [info.info-dm] computer science [cs]/discrete mathematics [cs.dm] Computer Science Discrete Mathematics kraśkiewicz-pragacz modules schubert calculus schubert functors schubert polynomials |
| Title | Kraśkiewicz-Pragacz modules and some positivity properties of Schubert polynomials |
| URI | https://hal.science/hal-01337821 https://doaj.org/article/2d9f15f893324263b7dafda5047ef08d |
| Volume | DMTCS Proceedings, 27th... |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044734695 issn: 1365-8050 databaseCode: M~E dateStart: 19980101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BFMQW dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Engineering Database (NC LIVE) customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: PIMPY dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4h2kN7AEpbdXnJQlxT8rBj-wgIRFUWrdRWoqdoEo_LquwuSnapyqF_hN_T_9VxkkXl1EtziBTLcpxvnMwj428ADhJt2GyIXaRK8pHMTRxh4k3kjSyTvAylcVp2_Qt9eWmuruzor1JfISesowfugDtMnfWJ8qEqfEsuXmqH3qGKpSYfGxe-vrG2S2eq_3-QWqm73XgyT605dJN51bxPpcme6J-Wpp-1yvUyitpqlbMNWOvNQXHUTeMVrNB0E9aXpRZE_-ZtwsvhI71q8xo-fazx98P3Mf0YV_fRqMZvWN2LycwtbqgROHWimU1IdAlZoTiEuA0x9zqQp4qZ52GvFyGhmnvc_Az7knkNvoEvZ6efT86jvjpCVKXB50tQO2s920-aSJLPNKZeIyqyyppKlxaxKinOCD0_d26cDEApkpmmuLLZW1idzqb0DoTOdKkQc0fso-ZOIssssYoPzxeZHcDBErPitiPBKNh5aKEtWmiLAO0AjgOej10Cc3XbwPIsenkW_5LnAPZZGk_GOD-6KEIbW6sZGzTJXbL1P-60DS_Y-lFdPGUHVuf1gnbheXU3Hzf1Xrue-Dz8dboHz0YfhqOvfwCRXdUD |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Discrete+mathematics+and+theoretical+computer+science&rft.atitle=Kra%C5%9Bkiewicz-Pragacz+modules+and+some+positivity+properties+of+Schubert+polynomials&rft.au=Watanabe%2C+Masaki&rft.series=DMTCS+Proceedings&rft.date=2015-01-01&rft.pub=DMTCS&rft.issn=1462-7264&rft.eissn=1365-8050&rft.volume=DMTCS+Proceedings%2C+27th+International+Conference+on+Formal+Power+Series+and+Algebraic+Combinatorics+%28FPSAC+2015%29&rft.spage=253&rft.epage=260&rft_id=info:doi/10.46298%2Fdmtcs.2483&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01337821v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon |