Kraśkiewicz-Pragacz modules and some positivity properties of Schubert polynomials

We use the modules introduced by Kraśkiewicz and Pragacz (1987, 2004) to show some positivity propertiesof Schubert polynomials. We give a new proof to the classical fact that the product of two Schubert polynomialsis Schubert-positive, and also show a new result that the plethystic composition of a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings, 27th...; číslo Proceedings; s. 253 - 260
Hlavný autor: Watanabe, Masaki
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: DMTCS 01.01.2015
Discrete Mathematics & Theoretical Computer Science
Edícia:DMTCS Proceedings
Predmet:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We use the modules introduced by Kraśkiewicz and Pragacz (1987, 2004) to show some positivity propertiesof Schubert polynomials. We give a new proof to the classical fact that the product of two Schubert polynomialsis Schubert-positive, and also show a new result that the plethystic composition of a Schur function with a Schubertpolynomial is Schubert-positive. The present submission is an extended abstract on these results and the full versionof this work will be published elsewhere. Nous employons les modules introduits par Kraśkiewicz et Pragacz (1987, 2004) et démontrons certainespropriétés de positivité des polynômes de Schubert: nous donnons une nouvelle preuve pour le fait classique quele produit de deux polynômes de Schubert est Schubert-positif; nous démontrons aussi un nouveau résultat que lacomposition plethystique d’une fonction de Schur avec un polynôme de Schubert est Schubert-positif. Cet article estun sommaire de ces résultats, et une version pleine de ce travail sera publée ailleurs.
AbstractList We use the modules introduced by Kraśkiewicz and Pragacz (1987, 2004) to show some positivity propertiesof Schubert polynomials. We give a new proof to the classical fact that the product of two Schubert polynomialsis Schubert-positive, and also show a new result that the plethystic composition of a Schur function with a Schubertpolynomial is Schubert-positive. The present submission is an extended abstract on these results and the full versionof this work will be published elsewhere.
We use the modules introduced by Kraśkiewicz and Pragacz (1987, 2004) to show some positivity propertiesof Schubert polynomials. We give a new proof to the classical fact that the product of two Schubert polynomialsis Schubert-positive, and also show a new result that the plethystic composition of a Schur function with a Schubertpolynomial is Schubert-positive. The present submission is an extended abstract on these results and the full versionof this work will be published elsewhere. Nous employons les modules introduits par Kraśkiewicz et Pragacz (1987, 2004) et démontrons certainespropriétés de positivité des polynômes de Schubert: nous donnons une nouvelle preuve pour le fait classique quele produit de deux polynômes de Schubert est Schubert-positif; nous démontrons aussi un nouveau résultat que lacomposition plethystique d’une fonction de Schur avec un polynôme de Schubert est Schubert-positif. Cet article estun sommaire de ces résultats, et une version pleine de ce travail sera publée ailleurs.
Author Watanabe, Masaki
Author_xml – sequence: 1
  givenname: Masaki
  surname: Watanabe
  fullname: Watanabe, Masaki
  organization: Graduate School of Mathematical Sciences[Tokyo]
BackLink https://hal.science/hal-01337821$$DView record in HAL
BookMark eNpVUdtOAjEQbYwmKvrkD-yrMYu97NLtIyEqRBJN0OdmaKdQ3aWkRQ38it_jf7mAMfp0Zs6cOZnJOSWHi7BAQi4Y7RY9rqpr26xM6vKiEgfkhIlemVe0pId_6mNymtILpYyrQp6QyX2Er89Xjx_ebPLHCDMwm6wJ9q3GlMHCZik0mC1D8iv_7lfrbBnDEuPKt-PgsomZv03btlXU60VoPNTpjBy5FvD8Bzvk-fbmaTDMxw93o0F_nBtOOc0ZSKuUKzmXiAU6IYE7CVCiKlVl5FQBmClSgeDah3qVLTiVqsRCSKRGiQ4Z7X1tgBe9jL6BuNYBvN4RIc40tIeaGjW3yrHSVUoIXvCemEoLzkJJC4mOVrb1utx7zaH-ZzXsj_WWo0wIWXH2zlrt1V5rYkgpovtdYFTvctC7HPQ2B_ENxE1_KQ
ContentType Journal Article
Conference Proceeding
Copyright Attribution
Copyright_xml – notice: Attribution
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.46298/dmtcs.2483
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
EndPage 260
ExternalDocumentID oai_doaj_org_article_2d9f15f893324263b7dafda5047ef08d
oai:HAL:hal-01337821v1
10_46298_dmtcs_2483
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
1XC
VOOES
ID FETCH-LOGICAL-c2020-1a7d99f5227ee4ef37a2f7aa5e9598c7b9aacbe03eaf48368d420795e437e0c93
IEDL.DBID DOA
ISSN 1365-8050
1462-7264
IngestDate Fri Oct 03 12:52:14 EDT 2025
Sat Nov 29 15:10:33 EST 2025
Sat Nov 29 02:48:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Proceedings
Keywords Schubert functors
Kraśkiewicz-Pragacz modules
Schubert polynomials
Schubert calculus
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MeetingName 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015)
MergedId FETCHMERGED-LOGICAL-c2020-1a7d99f5227ee4ef37a2f7aa5e9598c7b9aacbe03eaf48368d420795e437e0c93
OpenAccessLink https://doaj.org/article/2d9f15f893324263b7dafda5047ef08d
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_2d9f15f893324263b7dafda5047ef08d
hal_primary_oai_HAL_hal_01337821v1
crossref_primary_10_46298_dmtcs_2483
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationSeriesTitle DMTCS Proceedings
PublicationTitle Discrete mathematics and theoretical computer science
PublicationYear 2015
Publisher DMTCS
Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: DMTCS
– name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
ssib044734695
Score 1.9390905
Snippet We use the modules introduced by Kraśkiewicz and Pragacz (1987, 2004) to show some positivity propertiesof Schubert polynomials. We give a new proof to the...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 253
SubjectTerms [info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
Computer Science
Discrete Mathematics
kraśkiewicz-pragacz modules
schubert calculus
schubert functors
schubert polynomials
Title Kraśkiewicz-Pragacz modules and some positivity properties of Schubert polynomials
URI https://hal.science/hal-01337821
https://doaj.org/article/2d9f15f893324263b7dafda5047ef08d
Volume DMTCS Proceedings, 27th...
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044734695
  issn: 1365-8050
  databaseCode: M~E
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Engineering Database (NC LIVE)
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4h2kN7AEpbdXnJQlxT8rBj-wgIRFUWrdRWoqdoEo_LquwuSnapyqF_hN_T_9VxkkXl1EtziBTLcpxvnMwj428ADhJt2GyIXaRK8pHMTRxh4k3kjSyTvAylcVp2_Qt9eWmuruzor1JfISesowfugDtMnfWJ8qEqfEsuXmqH3qGKpSYfGxe-vrG2S2eq_3-QWqm73XgyT605dJN51bxPpcme6J-Wpp-1yvUyitpqlbMNWOvNQXHUTeMVrNB0E9aXpRZE_-ZtwsvhI71q8xo-fazx98P3Mf0YV_fRqMZvWN2LycwtbqgROHWimU1IdAlZoTiEuA0x9zqQp4qZ52GvFyGhmnvc_Az7knkNvoEvZ6efT86jvjpCVKXB50tQO2s920-aSJLPNKZeIyqyyppKlxaxKinOCD0_d26cDEApkpmmuLLZW1idzqb0DoTOdKkQc0fso-ZOIssssYoPzxeZHcDBErPitiPBKNh5aKEtWmiLAO0AjgOej10Cc3XbwPIsenkW_5LnAPZZGk_GOD-6KEIbW6sZGzTJXbL1P-60DS_Y-lFdPGUHVuf1gnbheXU3Hzf1Xrue-Dz8dboHz0YfhqOvfwCRXdUD
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Discrete+mathematics+and+theoretical+computer+science&rft.atitle=Kra%C5%9Bkiewicz-Pragacz+modules+and+some+positivity+properties+of+Schubert+polynomials&rft.au=Watanabe%2C+Masaki&rft.series=DMTCS+Proceedings&rft.date=2015-01-01&rft.pub=DMTCS&rft.issn=1462-7264&rft.eissn=1365-8050&rft.volume=DMTCS+Proceedings%2C+27th+International+Conference+on+Formal+Power+Series+and+Algebraic+Combinatorics+%28FPSAC+2015%29&rft.spage=253&rft.epage=260&rft_id=info:doi/10.46298%2Fdmtcs.2483&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01337821v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon