Long-term creep life prediction of P91 steel using domain knowledge and back propagation artificial neural network

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials at high temperatures Jg. 42; H. 1; S. 14 - 24
Hauptverfasser: Song, Chaolu, Liu, Xinbao, Zhu, Lin, Fan, Ping, Ren, Siyu, Zhang, Kai, Chen, Jie, Chen, Hongtao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 02.01.2025
ISSN:0960-3409, 1878-6413
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Author Chen, Hongtao
Zhu, Lin
Liu, Xinbao
Song, Chaolu
Fan, Ping
Chen, Jie
Ren, Siyu
Zhang, Kai
Author_xml – sequence: 1
  givenname: Chaolu
  surname: Song
  fullname: Song, Chaolu
– sequence: 2
  givenname: Xinbao
  orcidid: 0009-0002-9301-1042
  surname: Liu
  fullname: Liu, Xinbao
– sequence: 3
  givenname: Lin
  surname: Zhu
  fullname: Zhu, Lin
– sequence: 4
  givenname: Ping
  surname: Fan
  fullname: Fan, Ping
– sequence: 5
  givenname: Siyu
  surname: Ren
  fullname: Ren, Siyu
– sequence: 6
  givenname: Kai
  orcidid: 0000-0002-8102-3196
  surname: Zhang
  fullname: Zhang, Kai
– sequence: 7
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
– sequence: 8
  givenname: Hongtao
  surname: Chen
  fullname: Chen, Hongtao
BookMark eNo1kMtOwzAUBS1UJErpJyD5B1L8ShovUcVLigQLWEc39nVkNbUjO1XF30NKWc1mzlnMLVmEGJCQe842nNXsgemKScX0RjBRboQqpRT8iix5va2LSnG5IMvZKWbphqxz9h0TWnOuVL0kqYmhLyZMB2oS4kgH75COCa03k4-BRkc_NKd5QhzoMfvQUxsP4APdh3ga0PZIIVjagdn_7uIIPZyHkCbvvPEw0IDHdMZ0iml_R64dDBnXF67I1_PT5-61aN5f3naPTWEE41NhSwsgXWccOlNDKdi22wJ2UGnbSWsRja2cUbxjtbMoGOOgtJauKsFUVsoVKf9-TYo5J3TtmPwB0nfLWTu3a__btXO79tJO_gAHZ2cn
Cites_doi 10.1016/j.ijpvp.2010.03.010
10.1016/j.engfracmech.2021.108130
10.1016/j.scitotenv.2022.160933
10.1016/j.ijpvp.2019.02.014
10.1016/j.ijpvp.2022.104763
10.1016/j.jallcom.2018.01.120
10.3390/en13112935
10.1016/j.egyr.2019.11.106
10.1016/j.rser.2019.109418
10.1007/978-981-13-2772-8_9
10.1080/09603409.2023.2276996
10.1016/j.ijfatigue.2022.106836
10.1016/j.ijmecsci.2021.106505
10.1016/j.engfailanal.2021.105887
10.1134/S0040601523020064
10.48550/arXiv.2004.05424
10.1007/s12666-020-02137-x
10.1016/j.ijpvp.2023.105039
10.1080/14686996.2019.1697616
10.1115/1.4047173
10.1109/TSMC.1974.5409141
10.1080/09603409.2019.1585060
10.1016/j.jmst.2018.09.024
10.1016/j.jmrt.2021.04.079
10.1016/j.scitotenv.2022.153645
10.1016/j.applthermaleng.2021.116794
10.1016/j.matdes.2020.109199
10.1016/j.egyr.2022.04.044
10.1109/ICCTA54562.2021.9916603
10.1179/026708399101505428
10.1007/s12666-015-0803-6
10.1016/j.ijpvp.2019.104014
10.1016/j.applthermaleng.2023.121365
10.1016/j.cmpb.2013.01.002
10.1007/s11356-020-09129-w
10.1016/j.ijfatigue.2023.107648
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1080/09603409.2025.2453321
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-6413
EndPage 24
ExternalDocumentID 10_1080_09603409_2025_2453321
GroupedDBID -~X
0BK
0R~
29M
4.4
5GY
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAYXX
ABCCY
ABDBF
ABFIM
ABLIJ
ABPAQ
ABXUL
ABXYU
ACBEA
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
AEGXH
AEISY
AENEX
AFRVT
AGDLA
AHDZW
AIAGR
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
BLEHA
CCCUG
CITATION
CS3
DGEBU
DKSSO
DU5
E01
EBS
ESX
GCUZY
H13
HCLVR
HHL
HZ~
KYCEM
LJTGL
M41
M4Z
MV1
P2P
P75
P7B
RIG
RNANH
ROSJB
RTWRZ
SJN
TASJS
TBQAZ
TCY
TDBHL
TEX
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
ZGOLN
ID FETCH-LOGICAL-c201t-d5daa3fbcfefc8a5207b7aeba69db3ddeecd6fc41b08fde2001a4993f65ac6d33
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001406922600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-3409
IngestDate Sat Nov 29 08:11:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c201t-d5daa3fbcfefc8a5207b7aeba69db3ddeecd6fc41b08fde2001a4993f65ac6d33
ORCID 0009-0002-9301-1042
0000-0002-8102-3196
PageCount 11
ParticipantIDs crossref_primary_10_1080_09603409_2025_2453321
PublicationCentury 2000
PublicationDate 2025-01-02
PublicationDateYYYYMMDD 2025-01-02
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-02
  day: 02
PublicationDecade 2020
PublicationTitle Materials at high temperatures
PublicationYear 2025
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_24_1
e_1_3_4_21_1
e_1_3_4_22_1
e_1_3_4_27_1
e_1_3_4_28_1
e_1_3_4_25_1
e_1_3_4_26_1
e_1_3_4_29_1
e_1_3_4_31_1
e_1_3_4_30_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_16_1
e_1_3_4_17_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_18_1
e_1_3_4_19_1
References_xml – ident: e_1_3_4_34_1
  doi: 10.1016/j.ijpvp.2010.03.010
– ident: e_1_3_4_21_1
  doi: 10.1016/j.engfracmech.2021.108130
– ident: e_1_3_4_30_1
  doi: 10.1016/j.scitotenv.2022.160933
– ident: e_1_3_4_13_1
  doi: 10.1016/j.ijpvp.2019.02.014
– ident: e_1_3_4_4_1
  doi: 10.1016/j.ijpvp.2022.104763
– ident: e_1_3_4_14_1
  doi: 10.1016/j.jallcom.2018.01.120
– ident: e_1_3_4_10_1
  doi: 10.3390/en13112935
– ident: e_1_3_4_6_1
  doi: 10.1016/j.egyr.2019.11.106
– ident: e_1_3_4_18_1
  doi: 10.1016/j.rser.2019.109418
– ident: e_1_3_4_17_1
  doi: 10.1007/978-981-13-2772-8_9
– ident: e_1_3_4_22_1
  doi: 10.1080/09603409.2023.2276996
– ident: e_1_3_4_37_1
  doi: 10.1016/j.ijfatigue.2022.106836
– ident: e_1_3_4_5_1
  doi: 10.1016/j.ijmecsci.2021.106505
– ident: e_1_3_4_12_1
  doi: 10.1016/j.engfailanal.2021.105887
– ident: e_1_3_4_11_1
  doi: 10.1134/S0040601523020064
– ident: e_1_3_4_25_1
  doi: 10.48550/arXiv.2004.05424
– ident: e_1_3_4_3_1
  doi: 10.1007/s12666-020-02137-x
– ident: e_1_3_4_19_1
  doi: 10.1016/j.ijpvp.2023.105039
– ident: e_1_3_4_33_1
  doi: 10.1080/14686996.2019.1697616
– ident: e_1_3_4_27_1
  doi: 10.1115/1.4047173
– ident: e_1_3_4_32_1
  doi: 10.1109/TSMC.1974.5409141
– ident: e_1_3_4_2_1
  doi: 10.1080/09603409.2019.1585060
– ident: e_1_3_4_29_1
  doi: 10.1016/j.jmst.2018.09.024
– ident: e_1_3_4_36_1
  doi: 10.1016/j.jmrt.2021.04.079
– ident: e_1_3_4_7_1
  doi: 10.1016/j.scitotenv.2022.153645
– ident: e_1_3_4_16_1
  doi: 10.1016/j.applthermaleng.2021.116794
– ident: e_1_3_4_26_1
  doi: 10.1016/j.matdes.2020.109199
– ident: e_1_3_4_15_1
  doi: 10.1016/j.egyr.2022.04.044
– ident: e_1_3_4_20_1
  doi: 10.1109/ICCTA54562.2021.9916603
– ident: e_1_3_4_35_1
  doi: 10.1179/026708399101505428
– ident: e_1_3_4_28_1
  doi: 10.1007/s12666-015-0803-6
– ident: e_1_3_4_23_1
  doi: 10.1016/j.ijpvp.2019.104014
– ident: e_1_3_4_9_1
  doi: 10.1016/j.applthermaleng.2023.121365
– ident: e_1_3_4_31_1
  doi: 10.1016/j.cmpb.2013.01.002
– ident: e_1_3_4_8_1
  doi: 10.1007/s11356-020-09129-w
– ident: e_1_3_4_24_1
  doi: 10.1016/j.ijfatigue.2023.107648
SSID ssib029911448
ssj0024748
Score 2.3534052
SourceID crossref
SourceType Index Database
StartPage 14
Title Long-term creep life prediction of P91 steel using domain knowledge and back propagation artificial neural network
Volume 42
WOSCitedRecordID wos001406922600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1878-6413
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024748
  issn: 0960-3409
  databaseCode: TFW
  dateStart: 19910201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoEeEE8BLcgHblFW2cSJk2NVUfVQqpVYxN5WfkLEkqyW3aq_rL-PGdt5QBGiBy5JZCm2k_k0r8x8IeRdlSYW4gYd2yrnMZPFLJYpU3GJ1OOSWfB4naQv-OVluVxW88nkpuuFuVrzpimvr6vNfxU1jIGwsXX2DuLuJ4UBuAahwxHEDsd_EvxF23yJUeFG4BCaTbSuLTZD4QeZzjucV7MIpGvW0d6lCnT7XdRN1OfX3BcFKdQ3LN8CjeNBgmsFvglkwXQnV0M-dnA_iJ1_SOySRC7kCMmvAnNz779_DIXAp18FvIu-KKje4-CybqRoh4z2PuQOeqj5nO28M7ohZ5HmLmcxTmNC3BRnLPHK0njVW0I8WzDfmdrpZpbewqBXtL7zNJhs34V9yxiE6klYC5ea4kamKQP_1vdk_0q-_ZtR7EsVZx2HaphmhdOswjT3yP2U5xWWEi7OPnd6DCw8RJmsHDgfufuLW__UXScZcrz_aXcjH2nk7Cwek0chSqEnHl1PyMQ0T8nhiLvyGdn2OKMOZxRxRgec0dZSwBl1OKMOZ9TjjPY4o4AzijijI5zRAWfU44wGnD0nn87eL07P4_ADj1iBX7mLda6FyKxU1lhVijxNuOTCSFFUWmZgWI3ShVVsJpPSaoPlfQIi8MwWuVCFzrIX5KBpG_OSUGWSREpe2ipRzGZGMKYV0zw1hS2zpHpFpt0rW208T8vqr6J7fdcbjsjDAcrH5GC33Zs35IG62tU_tm8dAH4CNmaJuA
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+creep+life+prediction+of+P91+steel+using+domain+knowledge+and+back+propagation+artificial+neural+network&rft.jtitle=Materials+at+high+temperatures&rft.au=Song%2C+Chaolu&rft.au=Liu%2C+Xinbao&rft.au=Zhu%2C+Lin&rft.au=Fan%2C+Ping&rft.date=2025-01-02&rft.issn=0960-3409&rft.eissn=1878-6413&rft.volume=42&rft.issue=1&rft.spage=14&rft.epage=24&rft_id=info:doi/10.1080%2F09603409.2025.2453321&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_09603409_2025_2453321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3409&client=summon