Performance Characterization of Python Runtimes for Multi-device Task Parallel Programming
Modern Python programs in high-performance computing call into compiled libraries and kernels for performance-critical tasks. However, effectively parallelizing these finer-grained, and often dynamic, kernels across modern heterogeneous platforms remains a challenge. This paper designs and optimizes...
Uloženo v:
| Vydáno v: | International journal of parallel programming Ročník 53; číslo 2; s. 16 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.04.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-7458, 1573-7640 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Modern Python programs in high-performance computing call into compiled libraries and kernels for performance-critical tasks. However, effectively parallelizing these finer-grained, and often dynamic, kernels across modern heterogeneous platforms remains a challenge. This paper designs and optimizes a multi-threaded runtime for Python tasks on single-node multi-GPU systems, including tasks that use resources across multiple devices. We perform an experimental study which examines the impact of Python’s Global Interpreter Lock (GIL) on runtime performance and the potential gains under a GIL-less PEP703 future. This work explores tasks with variants for different different device sets, introducing new programming abstractions and runtime mechanisms to simplify their management and enhance portability. Our experimental analysis, using tasks graphs from synthetic and real applications, shows at least a 3
×
(and up to 6
×
) performance improvement over its predecessor in scenarios with high GIL contention. Our implementation of multi-device tasks achieves 8
×
less overhead per task relative to a multi-process alternative using Ray. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7458 1573-7640 |
| DOI: | 10.1007/s10766-025-00788-1 |