Privacy preserving planning in multi-agent stochastic environments

Collaborative privacy preserving planning ( cppp ) gained much attention in the past decade. cppp aims to create solutions for multi agent planning problems where cooperation is required to achieve an efficient solution, without exposing information that the agent considers private in the process. T...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Autonomous agents and multi-agent systems Ročník 36; číslo 1
Hlavní autoři: Hefner, Tommy, Shani, Guy, Stern, Roni
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2022
Springer Nature B.V
Témata:
ISSN:1387-2532, 1573-7454
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Collaborative privacy preserving planning ( cppp ) gained much attention in the past decade. cppp aims to create solutions for multi agent planning problems where cooperation is required to achieve an efficient solution, without exposing information that the agent considers private in the process. To date, cppp has focused on domains with deterministic action effects. However, in real-world problems action effects are often non-deterministic, and actions can have multiple possible effects with varying probabilities. In this paper, we introduce Stochastic cppp ( scppp ), which is an extension of cppp to domains with stochastic action effects. We show how scppp can be modeled as a Markov decision process ( mdp ) and how the value-iteration algorithm can be adapted to solve it. This adaptation requires extending value-iteration to support multiple agents and privacy. Then, we present two adaptions of the real-time dynamic programming ( rtdp ) algorithm, a popular algorithm for solving mdp s, designed to solve scppp problems. The first rtdp adaptation, called distributed rtdp ( drtdp ), yields identical behavior to applying rtdp in a centralized manner on the joint problem. To preserve privacy, drtdp uses a message passing mechanism adopted from the mafs algorithm. The second rtdp adaptation is an approximation of drtdp called public synchronization rtdp ( ps - rtdp ). ps - rtdp differs from drtdp mainly in its message passing mechanism, where ps - rtdp sends significantly fewer messages than drtdp . We experimented on domains adapted from the deterministic cppp literature by adding different stochastic effects to different actions. The results show that ps - rtdp can reduce the amount of messages compared to drtdp by orders of magnitude thus improving run-time, while producing policies with similar expected costs.
AbstractList Collaborative privacy preserving planning ( cppp ) gained much attention in the past decade. cppp aims to create solutions for multi agent planning problems where cooperation is required to achieve an efficient solution, without exposing information that the agent considers private in the process. To date, cppp has focused on domains with deterministic action effects. However, in real-world problems action effects are often non-deterministic, and actions can have multiple possible effects with varying probabilities. In this paper, we introduce Stochastic cppp ( scppp ), which is an extension of cppp to domains with stochastic action effects. We show how scppp can be modeled as a Markov decision process ( mdp ) and how the value-iteration algorithm can be adapted to solve it. This adaptation requires extending value-iteration to support multiple agents and privacy. Then, we present two adaptions of the real-time dynamic programming ( rtdp ) algorithm, a popular algorithm for solving mdp s, designed to solve scppp problems. The first rtdp adaptation, called distributed rtdp ( drtdp ), yields identical behavior to applying rtdp in a centralized manner on the joint problem. To preserve privacy, drtdp uses a message passing mechanism adopted from the mafs algorithm. The second rtdp adaptation is an approximation of drtdp called public synchronization rtdp ( ps - rtdp ). ps - rtdp differs from drtdp mainly in its message passing mechanism, where ps - rtdp sends significantly fewer messages than drtdp . We experimented on domains adapted from the deterministic cppp literature by adding different stochastic effects to different actions. The results show that ps - rtdp can reduce the amount of messages compared to drtdp by orders of magnitude thus improving run-time, while producing policies with similar expected costs.
Collaborative privacy preserving planning (cppp) gained much attention in the past decade. cppp aims to create solutions for multi agent planning problems where cooperation is required to achieve an efficient solution, without exposing information that the agent considers private in the process. To date, cppp has focused on domains with deterministic action effects. However, in real-world problems action effects are often non-deterministic, and actions can have multiple possible effects with varying probabilities. In this paper, we introduce Stochastic cppp (scppp), which is an extension of cppp to domains with stochastic action effects. We show how scppp can be modeled as a Markov decision process (mdp) and how the value-iteration algorithm can be adapted to solve it. This adaptation requires extending value-iteration to support multiple agents and privacy. Then, we present two adaptions of the real-time dynamic programming (rtdp) algorithm, a popular algorithm for solving mdps, designed to solve scppp problems. The first rtdp adaptation, called distributed rtdp (drtdp), yields identical behavior to applying rtdp in a centralized manner on the joint problem. To preserve privacy, drtdp uses a message passing mechanism adopted from the mafs algorithm. The second rtdp adaptation is an approximation of drtdp called public synchronization rtdp (ps-rtdp). ps-rtdp differs from drtdp mainly in its message passing mechanism, where ps-rtdp sends significantly fewer messages than drtdp. We experimented on domains adapted from the deterministic cppp literature by adding different stochastic effects to different actions. The results show that ps-rtdp can reduce the amount of messages compared to drtdp by orders of magnitude thus improving run-time, while producing policies with similar expected costs.
ArticleNumber 22
Author Shani, Guy
Hefner, Tommy
Stern, Roni
Author_xml – sequence: 1
  givenname: Tommy
  orcidid: 0000-0002-6538-4979
  surname: Hefner
  fullname: Hefner, Tommy
  email: tommyh@post.bgu.ac.il
  organization: Software and Information Engineering Department, Ben Gurion University of the Negev
– sequence: 2
  givenname: Guy
  surname: Shani
  fullname: Shani, Guy
  organization: Software and Information Engineering Department, Ben Gurion University of the Negev
– sequence: 3
  givenname: Roni
  surname: Stern
  fullname: Stern, Roni
  organization: Software and Information Engineering Department, Ben Gurion University of the Negev, Information Systems Laboratory, Palo Alto Research Center
BookMark eNp9kE9Lw0AQxRepYFv9Ap4Cnldn_6Y5atEqFPSg52WTTOqWdhN305Z-e7dG8OZpHsN7b4bfhIx865GQawa3DCC_iwykmlHgnEKhlKSHMzJmKhc0l0qOkhaznHIl-AWZxLgGYJprNiYPb8HtbXXMuoARw975VdZtrPcn4Xy23W16R-0KfZ_Fvq0-bexdlaHfu9D6bVrHS3Le2E3Eq985JR9Pj-_zZ7p8XbzM75e04gA9rYUtC25L4KibGquikg3WnMmSC0xPW502UKPFWmFdliVHpqwttdbA6lyIKbkZervQfu0w9mbd7oJPJw3XUkqY8UIlFx9cVWhjDNiYLritDUfDwJxYmYGVSazMDytzSCExhGIy-xWGv-p_Ut8WVXDT
Cites_doi 10.1109/TAC.1982.1102980
10.1287/moor.12.3.441
10.1609/icaps.v26i1.13741
10.1109/CDC.2013.6760239
10.1109/CDC42340.2020.9304015
10.1145/844102.844125
10.1126/science.153.3731.34
10.1609/aaai.v32i1.11584
10.1007/11871842_29
10.1287/moor.16.3.580
10.1145/3133326
10.1016/S0004-3702(01)00108-4
10.1613/jair.4295
10.1609/icaps.v26i1.13753
10.1007/s10458-018-9394-z
10.1109/Allerton.2013.6736549
10.1145/2970030.2970042
10.1016/0004-3702(94)00011-O
10.1137/16M1091162
10.1609/icaps.v22i1.13518
10.1016/j.artint.2012.08.005
10.1016/j.artint.2017.08.007
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2022
Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10458-022-09554-w
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7454
ExternalDocumentID 10_1007_s10458_022_09554_w
GrantInformation_xml – fundername: Israel Science Foundation
  grantid: 210/17; 1210/18
  funderid: http://dx.doi.org/10.13039/501100003977
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6J9
6NX
6TJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c200t-d3ab92ab02e6fdec9c4fed214b23e095a69c40deaed5edbbb2e15aab66601d733
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773922000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1387-2532
IngestDate Wed Sep 17 23:58:34 EDT 2025
Sat Nov 29 01:33:09 EST 2025
Fri Feb 21 02:45:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Privacy preserving planning
Multi-agent planning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-d3ab92ab02e6fdec9c4fed214b23e095a69c40deaed5edbbb2e15aab66601d733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6538-4979
PQID 2644408295
PQPubID 2043870
ParticipantIDs proquest_journals_2644408295
crossref_primary_10_1007_s10458_022_09554_w
springer_journals_10_1007_s10458_022_09554_w
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Autonomous agents and multi-agent systems
PublicationTitleAbbrev Auton Agent Multi-Agent Syst
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BrafmanRIDomshlakCOn the complexity of planning for agent teams and its implications for single agent planningArtificial Intelligence20131985271304882710.1016/j.artint.2012.08.005
MaliahSShaniGSternRAction dependencies in privacy-preserving multi-agent planningAutonomous Agents and Multi-Agent Systems201832677982110.1007/s10458-018-9394-z
Du, Wenliang., & Zhan, Zhijun. (2002). A practical approach to solve secure multi-party computation problems. In Proceedings of the 2002 workshop on New security paradigms, pp 127–135.
Trevizan, F. W., Teichteil-Königsbuch, F., & Thiébaux, S. (2017). Efficient solutions for stochastic shortest path problems with dead ends. In UAI.
PutermanMLMarkov decision processes: Discrete stochastic dynamic programming2014New YorkWiley0829.90134
Gohari, P., Hale, M., & Topcu, U. (2020). Privacy-preserving policy synthesis in markov decision processes. In 2020 59th IEEE Conference on Decision and Control (CDC) (pp. 6266–6271). IEEE.
Kocsis, L., Szepesvári, C. (2006). Bandit based monte-carlo planning. In European conference on machine learning (pp. 282–293). Springer.
BellmanRA Markovian decision processJournal of Mathematics and Mechanics19576679684918590078.34101
Ameloot, T. J., & Van den Bussche, J. (2015). On the convergence of cycle detection for navigational reinforcement learning. http://arxiv.org/1511.08724
WitzigJBeckenbachIEiflerLFackeldeyKGleixnerAGreverAWeberMMixed-integer programming for cycle detection in nonreversible Markov processesMultiscale Modeling & Simulation2018161248265376391210.1137/16M1091162
Hauskrecht, M., Meuleau, N., Kaelbling, L. P, Dean, T. L., & Boutilier, C. (2013). Hierarchical solution of markov decision processes using macro-actions. http://arxiv.org/1301.7381
Brafman, R. I., & Domshlak, C. (2008). From one to many: Planning for loosely coupled multi-agent systems. In ICAPS (pp. 28–35).
Štolba, M., Fišer, D., & Komenda, A. (2019). Privacy leakage of search-based multi-agent planning algorithms. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 29, pp. 482–490).
Maliah, S., Shani, G., & Brafman, R. I. (2016a). Online macro generation for privacy preserving planning. In Twenty-Sixth International Conference on Automated Planning and Scheduling.
Gerevini, A. E., Lipovetzky, N., Percassi, F., Saetti, A., & Serina, I. (2019). Best-first width search for multi agent privacy-preserving planning. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 29, pp. 163–171).
ŠtolbaMKomendaAThe Madla planner: Multi-agent planning by combination of distributed and local heuristic searchArtificial Intelligence2017252175210370666110.1016/j.artint.2017.08.007
ŠtolbaMTožičkaJKomendaAQuantifying privacy leakage in multi-agent planningTOIT20181832810.1145/3133326
Brafman, R. I. (2015). A privacy preserving algorithm for multi-agent planning and search. In IJCAI (pp. 1530–1536).
Maliah, S., Shani, G., & Stern, R. (2016b). Stronger privacy preserving projections for multi-agent planning. In the International Conference on Automated Planning and Scheduling (ICAPS) (pp. 221–229).
KolobovA.Planning with Markov decision processes: An AI perspectiveSynthesis Lectures on Artificial Intelligence and Machine Learning20126112101270.68014
Bonet, B., & Geffner, H. (2006). Learning depth-first search: A unified approach to heuristic search in deterministic and non-deterministic settings, and its application to mdps. In In ICAPS (Vol. 6, pp. 142–151).
Hefner, T., Stern, R., & Shani, G. (2020). Privacy preserving planning in stochastic environments. In J. C. Beck, O. Buffet, J. Hoffmann, E. Karpas, & S. Sohrabi, (Eds.). Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling, Nancy, France, October 26–30 (pp. 258–262). AAAI Press. https://aaai.org/ojs/index.php/ICAPS/article/view/6669
Brendan, M. H., Likhachev, M., & Gordon, G. J. (2005). Bounded real-time dynamic programming: Rtdp with monotone upper bounds and performance guarantees. In Proceedings of the 22nd international conference on Machine learning (pp. 569–576). ACM.
Tožička, J., Štolba, M., & Komenda, A. (2017). The limits of strong privacy preserving multi-agent planning. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 27).
BartoAGBradtkeSJSinghSPLearning to act using real-time dynamic programmingArtificial Intelligence1995721–28113810.1016/0004-3702(94)00011-O
Amato, C., Chowdhary, G., Geramifard, A., Kemal Üre, N., & Kochenderfer, M. J. (2013). Decentralized control of partially observable markov decision processes. In 52nd IEEE Conference on Decision and Control (pp. 2398–2405). IEEE.
Stolba, M., Fiser, D., & Komenda, A. (2019). Privacy leakage of search-based multi-agent planning algorithms. In J. Benton, N. Lipovetzky, E. Onaindia, D. E. Smith, & S. Srivastava (Eds.). Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11–15, 2019 (pp. 482–490). AAAI Press.
Boutilier, C. (1999). Sequential optimality and coordination in multiagent systems. In In IJCAI (Vol. 99, pp. 478–485).
Maliah, S., Shani, G., & Stern, R. (2014). Privacy preserving landmark detection. In the European Conference on Artificial Intelligence (ECAI) (pp. 597–602).
Wu, F., Zilberstein, S., & Chen, X. (2018). Privacy-preserving policy iteration for decentralized pomdps. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI), New Orleans, USA (pp. 4759–4766).
BertsekasDDistributed dynamic programmingIEEE Transactions on Automatic Control198227361061668031910.1109/TAC.1982.1102980
PapadimitriouCHTsitsiklisJNThe complexity of Markov decision processesMathematics of Operations Research198712344145090641610.1287/moor.12.3.441
Keller, T., & Eyerich, P. (2012). Prost: Probabilistic planning based on uct. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 22).
Maliah, S., Shani, G., & Stern, R. (2016c). Stronger privacy preserving projections for multi-agent planning. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 26).
Guestrin, C., Koller, D., & Parr, R. (2001). Max-norm projections for factored mdps. InIn IJCAI (Vol. 17, pp. 673–680).
BertsekasDPTsitsiklisJNAn analysis of stochastic shortest path problemsMathematics of Operations Research1991163580595112047110.1287/moor.16.3.580
Venkitasubramaniam, P. (2013). Privacy in stochastic control: A markov decision process perspective. In 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 381–388). IEEE.
NissimRBrafmanRIDistributed heuristic forward search for multi-agent planningJAIR201451293332327007510.1613/jair.4295
Littman, M. L., Dean, T. L., & Kaelbling, L. P. (2013). On the complexity of solving markov decision problems. http://arxiv.org/1302.4971
StolbaMTozickaJKomendaAQuantifying privacy leakage in multi-agent planningACM Transactions on Internet Technology201818328:128:2110.1145/3133326
BellmanRDynamic programmingScience19661533731343710.1126/science.153.3731.34
Štolba, M., Komenda, A., & Kovacs, D. L. (2015). Competition of distributed and multiagent planners (codmap). In The International Planning Competition (WIPC-15), (p. 24).
Smith, T., & Simmons, R. (2006). Focused real-time dynamic programming for mdps: Squeezing more out of a heuristic. In AAAI (pp. 1227–1232).
BonetBGeffnerHPlanning as heuristic searchArtificial Intelligence20011291533183577110.1016/S0004-3702(01)00108-4
9554_CR19
9554_CR39
AG Barto (9554_CR5) 1995; 72
9554_CR16
9554_CR38
9554_CR33
9554_CR10
9554_CR32
9554_CR31
9554_CR30
9554_CR15
9554_CR37
9554_CR36
9554_CR13
9554_CR35
9554_CR12
9554_CR34
R Nissim (9554_CR6) 2014; 51
D Bertsekas (9554_CR21) 1982; 27
CH Papadimitriou (9554_CR24) 1987; 12
9554_CR2
R Bellman (9554_CR17) 1957; 6
9554_CR1
R Bellman (9554_CR3) 1966; 153
M Stolba (9554_CR43) 2018; 18
9554_CR9
9554_CR29
9554_CR28
9554_CR7
DP Bertsekas (9554_CR25) 1991; 16
A. Kolobov (9554_CR4) 2012; 6
9554_CR44
9554_CR20
9554_CR42
9554_CR41
9554_CR26
M Štolba (9554_CR14) 2018; 18
M Štolba (9554_CR27) 2017; 252
9554_CR23
RI Brafman (9554_CR8) 2013; 198
J Witzig (9554_CR22) 2018; 16
B Bonet (9554_CR40) 2001; 129
S Maliah (9554_CR11) 2018; 32
ML Puterman (9554_CR18) 2014
References_xml – reference: Brafman, R. I. (2015). A privacy preserving algorithm for multi-agent planning and search. In IJCAI (pp. 1530–1536).
– reference: BertsekasDPTsitsiklisJNAn analysis of stochastic shortest path problemsMathematics of Operations Research1991163580595112047110.1287/moor.16.3.580
– reference: BonetBGeffnerHPlanning as heuristic searchArtificial Intelligence20011291533183577110.1016/S0004-3702(01)00108-4
– reference: Stolba, M., Fiser, D., & Komenda, A. (2019). Privacy leakage of search-based multi-agent planning algorithms. In J. Benton, N. Lipovetzky, E. Onaindia, D. E. Smith, & S. Srivastava (Eds.). Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11–15, 2019 (pp. 482–490). AAAI Press.
– reference: Du, Wenliang., & Zhan, Zhijun. (2002). A practical approach to solve secure multi-party computation problems. In Proceedings of the 2002 workshop on New security paradigms, pp 127–135.
– reference: Venkitasubramaniam, P. (2013). Privacy in stochastic control: A markov decision process perspective. In 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 381–388). IEEE.
– reference: Tožička, J., Štolba, M., & Komenda, A. (2017). The limits of strong privacy preserving multi-agent planning. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 27).
– reference: MaliahSShaniGSternRAction dependencies in privacy-preserving multi-agent planningAutonomous Agents and Multi-Agent Systems201832677982110.1007/s10458-018-9394-z
– reference: Maliah, S., Shani, G., & Stern, R. (2016c). Stronger privacy preserving projections for multi-agent planning. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 26).
– reference: BellmanRDynamic programmingScience19661533731343710.1126/science.153.3731.34
– reference: BrafmanRIDomshlakCOn the complexity of planning for agent teams and its implications for single agent planningArtificial Intelligence20131985271304882710.1016/j.artint.2012.08.005
– reference: KolobovA.Planning with Markov decision processes: An AI perspectiveSynthesis Lectures on Artificial Intelligence and Machine Learning20126112101270.68014
– reference: ŠtolbaMTožičkaJKomendaAQuantifying privacy leakage in multi-agent planningTOIT20181832810.1145/3133326
– reference: Hefner, T., Stern, R., & Shani, G. (2020). Privacy preserving planning in stochastic environments. In J. C. Beck, O. Buffet, J. Hoffmann, E. Karpas, & S. Sohrabi, (Eds.). Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling, Nancy, France, October 26–30 (pp. 258–262). AAAI Press. https://aaai.org/ojs/index.php/ICAPS/article/view/6669
– reference: Guestrin, C., Koller, D., & Parr, R. (2001). Max-norm projections for factored mdps. InIn IJCAI (Vol. 17, pp. 673–680).
– reference: Maliah, S., Shani, G., & Stern, R. (2016b). Stronger privacy preserving projections for multi-agent planning. In the International Conference on Automated Planning and Scheduling (ICAPS) (pp. 221–229).
– reference: StolbaMTozickaJKomendaAQuantifying privacy leakage in multi-agent planningACM Transactions on Internet Technology201818328:128:2110.1145/3133326
– reference: Bonet, B., & Geffner, H. (2006). Learning depth-first search: A unified approach to heuristic search in deterministic and non-deterministic settings, and its application to mdps. In In ICAPS (Vol. 6, pp. 142–151).
– reference: BellmanRA Markovian decision processJournal of Mathematics and Mechanics19576679684918590078.34101
– reference: Gohari, P., Hale, M., & Topcu, U. (2020). Privacy-preserving policy synthesis in markov decision processes. In 2020 59th IEEE Conference on Decision and Control (CDC) (pp. 6266–6271). IEEE.
– reference: Štolba, M., Fišer, D., & Komenda, A. (2019). Privacy leakage of search-based multi-agent planning algorithms. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 29, pp. 482–490).
– reference: Brendan, M. H., Likhachev, M., & Gordon, G. J. (2005). Bounded real-time dynamic programming: Rtdp with monotone upper bounds and performance guarantees. In Proceedings of the 22nd international conference on Machine learning (pp. 569–576). ACM.
– reference: WitzigJBeckenbachIEiflerLFackeldeyKGleixnerAGreverAWeberMMixed-integer programming for cycle detection in nonreversible Markov processesMultiscale Modeling & Simulation2018161248265376391210.1137/16M1091162
– reference: Wu, F., Zilberstein, S., & Chen, X. (2018). Privacy-preserving policy iteration for decentralized pomdps. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI), New Orleans, USA (pp. 4759–4766).
– reference: Trevizan, F. W., Teichteil-Königsbuch, F., & Thiébaux, S. (2017). Efficient solutions for stochastic shortest path problems with dead ends. In UAI.
– reference: Littman, M. L., Dean, T. L., & Kaelbling, L. P. (2013). On the complexity of solving markov decision problems. http://arxiv.org/1302.4971
– reference: Brafman, R. I., & Domshlak, C. (2008). From one to many: Planning for loosely coupled multi-agent systems. In ICAPS (pp. 28–35).
– reference: Ameloot, T. J., & Van den Bussche, J. (2015). On the convergence of cycle detection for navigational reinforcement learning. http://arxiv.org/1511.08724
– reference: Keller, T., & Eyerich, P. (2012). Prost: Probabilistic planning based on uct. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 22).
– reference: ŠtolbaMKomendaAThe Madla planner: Multi-agent planning by combination of distributed and local heuristic searchArtificial Intelligence2017252175210370666110.1016/j.artint.2017.08.007
– reference: Boutilier, C. (1999). Sequential optimality and coordination in multiagent systems. In In IJCAI (Vol. 99, pp. 478–485).
– reference: Hauskrecht, M., Meuleau, N., Kaelbling, L. P, Dean, T. L., & Boutilier, C. (2013). Hierarchical solution of markov decision processes using macro-actions. http://arxiv.org/1301.7381
– reference: PutermanMLMarkov decision processes: Discrete stochastic dynamic programming2014New YorkWiley0829.90134
– reference: BartoAGBradtkeSJSinghSPLearning to act using real-time dynamic programmingArtificial Intelligence1995721–28113810.1016/0004-3702(94)00011-O
– reference: Štolba, M., Komenda, A., & Kovacs, D. L. (2015). Competition of distributed and multiagent planners (codmap). In The International Planning Competition (WIPC-15), (p. 24).
– reference: Gerevini, A. E., Lipovetzky, N., Percassi, F., Saetti, A., & Serina, I. (2019). Best-first width search for multi agent privacy-preserving planning. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 29, pp. 163–171).
– reference: Maliah, S., Shani, G., & Stern, R. (2014). Privacy preserving landmark detection. In the European Conference on Artificial Intelligence (ECAI) (pp. 597–602).
– reference: Kocsis, L., Szepesvári, C. (2006). Bandit based monte-carlo planning. In European conference on machine learning (pp. 282–293). Springer.
– reference: BertsekasDDistributed dynamic programmingIEEE Transactions on Automatic Control198227361061668031910.1109/TAC.1982.1102980
– reference: Smith, T., & Simmons, R. (2006). Focused real-time dynamic programming for mdps: Squeezing more out of a heuristic. In AAAI (pp. 1227–1232).
– reference: NissimRBrafmanRIDistributed heuristic forward search for multi-agent planningJAIR201451293332327007510.1613/jair.4295
– reference: Maliah, S., Shani, G., & Brafman, R. I. (2016a). Online macro generation for privacy preserving planning. In Twenty-Sixth International Conference on Automated Planning and Scheduling.
– reference: Amato, C., Chowdhary, G., Geramifard, A., Kemal Üre, N., & Kochenderfer, M. J. (2013). Decentralized control of partially observable markov decision processes. In 52nd IEEE Conference on Decision and Control (pp. 2398–2405). IEEE.
– reference: PapadimitriouCHTsitsiklisJNThe complexity of Markov decision processesMathematics of Operations Research198712344145090641610.1287/moor.12.3.441
– volume-title: Markov decision processes: Discrete stochastic dynamic programming
  year: 2014
  ident: 9554_CR18
– ident: 9554_CR26
– volume: 27
  start-page: 610
  issue: 3
  year: 1982
  ident: 9554_CR21
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1982.1102980
– volume: 6
  start-page: 1
  issue: 1
  year: 2012
  ident: 9554_CR4
  publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning
– ident: 9554_CR32
– volume: 12
  start-page: 441
  issue: 3
  year: 1987
  ident: 9554_CR24
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.12.3.441
– ident: 9554_CR12
  doi: 10.1609/icaps.v26i1.13741
– ident: 9554_CR36
  doi: 10.1109/CDC.2013.6760239
– ident: 9554_CR33
  doi: 10.1109/CDC42340.2020.9304015
– ident: 9554_CR16
– ident: 9554_CR30
– ident: 9554_CR39
– ident: 9554_CR20
  doi: 10.1145/844102.844125
– volume: 153
  start-page: 34
  issue: 3731
  year: 1966
  ident: 9554_CR3
  publication-title: Science
  doi: 10.1126/science.153.3731.34
– ident: 9554_CR13
  doi: 10.1609/aaai.v32i1.11584
– volume: 6
  start-page: 679
  year: 1957
  ident: 9554_CR17
  publication-title: Journal of Mathematics and Mechanics
– ident: 9554_CR37
  doi: 10.1007/11871842_29
– ident: 9554_CR44
– volume: 16
  start-page: 580
  issue: 3
  year: 1991
  ident: 9554_CR25
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.16.3.580
– volume: 18
  start-page: 28
  issue: 3
  year: 2018
  ident: 9554_CR14
  publication-title: TOIT
  doi: 10.1145/3133326
– volume: 129
  start-page: 5
  issue: 1
  year: 2001
  ident: 9554_CR40
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(01)00108-4
– ident: 9554_CR2
– volume: 51
  start-page: 293
  year: 2014
  ident: 9554_CR6
  publication-title: JAIR
  doi: 10.1613/jair.4295
– ident: 9554_CR23
– ident: 9554_CR42
– ident: 9554_CR28
  doi: 10.1609/icaps.v26i1.13753
– ident: 9554_CR29
  doi: 10.1609/icaps.v26i1.13753
– volume: 32
  start-page: 779
  issue: 6
  year: 2018
  ident: 9554_CR11
  publication-title: Autonomous Agents and Multi-Agent Systems
  doi: 10.1007/s10458-018-9394-z
– ident: 9554_CR34
  doi: 10.1109/Allerton.2013.6736549
– ident: 9554_CR10
  doi: 10.1145/2970030.2970042
– volume: 72
  start-page: 81
  issue: 1–2
  year: 1995
  ident: 9554_CR5
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(94)00011-O
– ident: 9554_CR19
– volume: 16
  start-page: 248
  issue: 1
  year: 2018
  ident: 9554_CR22
  publication-title: Multiscale Modeling & Simulation
  doi: 10.1137/16M1091162
– ident: 9554_CR41
  doi: 10.1609/icaps.v22i1.13518
– volume: 198
  start-page: 52
  year: 2013
  ident: 9554_CR8
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2012.08.005
– ident: 9554_CR35
– ident: 9554_CR15
– ident: 9554_CR31
– ident: 9554_CR9
– ident: 9554_CR38
– volume: 252
  start-page: 175
  year: 2017
  ident: 9554_CR27
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2017.08.007
– volume: 18
  start-page: 28:1
  issue: 3
  year: 2018
  ident: 9554_CR43
  publication-title: ACM Transactions on Internet Technology
  doi: 10.1145/3133326
– ident: 9554_CR7
– ident: 9554_CR1
SSID ssj0016261
Score 2.3060288
Snippet Collaborative privacy preserving planning ( cppp ) gained much attention in the past decade. cppp aims to create solutions for multi agent planning problems...
Collaborative privacy preserving planning (cppp) gained much attention in the past decade. cppp aims to create solutions for multi agent planning problems...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Adaptation
Algorithms
Artificial Intelligence
Computer Science
Computer Systems Organization and Communication Networks
Domains
Dynamic programming
Iterative algorithms
Iterative methods
Markov processes
Message passing
Multiagent systems
Privacy
Real-time programming
Run time (computers)
Software Engineering/Programming and Operating Systems
Synchronism
User Interfaces and Human Computer Interaction
Title Privacy preserving planning in multi-agent stochastic environments
URI https://link.springer.com/article/10.1007/s10458-022-09554-w
https://www.proquest.com/docview/2644408295
Volume 36
WOSCitedRecordID wos000773922000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7454
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016261
  issn: 1387-2532
  databaseCode: RSV
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYWChPNVCQR7YwFJqO3EyAqJiqipe6hb5FegSqra04t9jOw4tCAZY4-hknX2-73SPD-DMOlUbVymGE04KzIgRWFpYiiMTa8olLxSryCZ4v58Oh9kgNIVN62r3OiXpX-qVZjfmhNjgyY1NY3ixDhvW3aWOsOHu_ukzd2AhehVmpW4GASWhVeZnGV_d0RJjfkuLem_Ta_5vnzuwHdAluqyuwy6smXIPmjVzAwqGvA9Xg8loLtQ7cmWw7rUon9E40BehUYl8mSEWru0KWXSoXoQb54xWu-IO4LF383B9iwObAlbWEmZYUyEzImRETFJoozLFCqNJl0lCjd2pSOyXSBthdGy0lJKYbiyEtPFN1NWc0kNolK-laQEiRUIyThR3kXXBaSbSuOAWKlFpl6Row3mt1HxcDc3Il-ORnXpyq57cqydftKFT6z0PBjTNHU7zXNhxGy5qPS-Xf5d29Lffj2GL-KNytTgdaMwmb-YENtV8NppOTv3F-gBTB8n4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4omuhFfEYUtQdv2gTa7pY9qpFgREIUDbemr1UuKwGE-O9t9yFo9KDX7WbSTDudbzIz3wCcOqfq4irNcMhJjBmxEisHS3HNBoZyxWPNsmETvNNp9PtRN28KGxfV7kVKMn2pF5rdmBfigidPm8bwbBlWmPNYnjH__uHpM3fgIHoWZjU8BwEleavMzzK-uqM5xvyWFk29TbP8v31uwkaOLtFFdh22YMkm21AuJjeg3JB34LI7Gkylfke-DNa_FskzGubji9AgQWmZIZa-7Qo5dKhfpKdzRotdcbvw2LzuXbVwPk0Ba2cJE2yoVBGRqkZsGBurI81ia0idKUKt26kM3ZeasdKawBqlFLH1QErl4pta3XBK96CUvCZ2HxCJQxJxormPrGNOI9kIYu6gElVuSckKnBVKFcOMNEPM6ZG9eoRTj0jVI2YVqBZ6F7kBjYXHaeks7KAC54We58u_Szv42-8nsNbq3bVF-6ZzewjrJD02X5dThdJk9GaPYFVPJ4Px6Di9ZB_VCczc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60inixPrFaNQdvGtpms5vu0VdRlFLwQW8hT-1lLe3a4r832YetogfxulmGMMlkvmHmmwE4dk7VxVWK4ogRiykxAksHS3HThDpgkllF82ETrNtt9_txb47Fn1W7lynJnNPguzQlaWOobWOO-Ea9QBdI-RZqFE8XYYn6Qnofr98_feYRHFzPQ66270cQkII287OMr65phje_pUgzz9Op_n_P67BWoE50ll-TDVgwySZUy4kOqDDwLTjvjQYTod6RL4_1r0jyjIbFWCM0SFBWfoiFp2MhhxrVi_BtntE8W24bHjtXDxfXuJiygJWzkBTrQMiYCNkkJrLaqFhRazRpUUkC43YqIvelqY0wOjRaSklMKxRCurin2dIsCHagkrwmZhcQsRGJGVHMR9yWBbFoh5Y5CBVItyRFDU5KBfNh3kyDz9ome_Vwpx6eqYdPa1Avz4AXhjXmHr9lM7LDGpyWOp8t_y5t72-_H8FK77LD7266t_uwSrJT8-U6daikozdzAMtqkg7Go8Psvn0A7pnVwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy+preserving+planning+in+multi-agent+stochastic+environments&rft.jtitle=Autonomous+agents+and+multi-agent+systems&rft.au=Hefner%2C+Tommy&rft.au=Shani%2C+Guy&rft.au=Stern%2C+Roni&rft.date=2022-04-01&rft.pub=Springer+US&rft.issn=1387-2532&rft.eissn=1573-7454&rft.volume=36&rft.issue=1&rft_id=info:doi/10.1007%2Fs10458-022-09554-w&rft.externalDocID=10_1007_s10458_022_09554_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-2532&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-2532&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-2532&client=summon