Privacy preserving planning in multi-agent stochastic environments
Collaborative privacy preserving planning ( cppp ) gained much attention in the past decade. cppp aims to create solutions for multi agent planning problems where cooperation is required to achieve an efficient solution, without exposing information that the agent considers private in the process. T...
Uloženo v:
| Vydáno v: | Autonomous agents and multi-agent systems Ročník 36; číslo 1 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.04.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 1387-2532, 1573-7454 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Collaborative privacy preserving planning (
cppp
) gained much attention in the past decade.
cppp
aims to create solutions for multi agent planning problems where cooperation is required to achieve an efficient solution, without exposing information that the agent considers private in the process. To date,
cppp
has focused on domains with deterministic action effects. However, in real-world problems action effects are often non-deterministic, and actions can have multiple possible effects with varying probabilities. In this paper, we introduce Stochastic
cppp
(
scppp
), which is an extension of
cppp
to domains with stochastic action effects. We show how
scppp
can be modeled as a Markov decision process (
mdp
) and how the
value-iteration
algorithm can be adapted to solve it. This adaptation requires extending
value-iteration
to support multiple agents and privacy. Then, we present two adaptions of the real-time dynamic programming (
rtdp
) algorithm, a popular algorithm for solving
mdp
s, designed to solve
scppp
problems. The first
rtdp
adaptation, called distributed
rtdp
(
drtdp
), yields identical behavior to applying
rtdp
in a centralized manner on the joint problem. To preserve privacy,
drtdp
uses a message passing mechanism adopted from the
mafs
algorithm. The second
rtdp
adaptation is an approximation of
drtdp
called public synchronization
rtdp
(
ps
-
rtdp
).
ps
-
rtdp
differs from
drtdp
mainly in its message passing mechanism, where
ps
-
rtdp
sends significantly fewer messages than
drtdp
. We experimented on domains adapted from the deterministic
cppp
literature by adding different stochastic effects to different actions. The results show that
ps
-
rtdp
can reduce the amount of messages compared to
drtdp
by orders of magnitude thus improving run-time, while producing policies with similar expected costs. |
|---|---|
| AbstractList | Collaborative privacy preserving planning (
cppp
) gained much attention in the past decade.
cppp
aims to create solutions for multi agent planning problems where cooperation is required to achieve an efficient solution, without exposing information that the agent considers private in the process. To date,
cppp
has focused on domains with deterministic action effects. However, in real-world problems action effects are often non-deterministic, and actions can have multiple possible effects with varying probabilities. In this paper, we introduce Stochastic
cppp
(
scppp
), which is an extension of
cppp
to domains with stochastic action effects. We show how
scppp
can be modeled as a Markov decision process (
mdp
) and how the
value-iteration
algorithm can be adapted to solve it. This adaptation requires extending
value-iteration
to support multiple agents and privacy. Then, we present two adaptions of the real-time dynamic programming (
rtdp
) algorithm, a popular algorithm for solving
mdp
s, designed to solve
scppp
problems. The first
rtdp
adaptation, called distributed
rtdp
(
drtdp
), yields identical behavior to applying
rtdp
in a centralized manner on the joint problem. To preserve privacy,
drtdp
uses a message passing mechanism adopted from the
mafs
algorithm. The second
rtdp
adaptation is an approximation of
drtdp
called public synchronization
rtdp
(
ps
-
rtdp
).
ps
-
rtdp
differs from
drtdp
mainly in its message passing mechanism, where
ps
-
rtdp
sends significantly fewer messages than
drtdp
. We experimented on domains adapted from the deterministic
cppp
literature by adding different stochastic effects to different actions. The results show that
ps
-
rtdp
can reduce the amount of messages compared to
drtdp
by orders of magnitude thus improving run-time, while producing policies with similar expected costs. Collaborative privacy preserving planning (cppp) gained much attention in the past decade. cppp aims to create solutions for multi agent planning problems where cooperation is required to achieve an efficient solution, without exposing information that the agent considers private in the process. To date, cppp has focused on domains with deterministic action effects. However, in real-world problems action effects are often non-deterministic, and actions can have multiple possible effects with varying probabilities. In this paper, we introduce Stochastic cppp (scppp), which is an extension of cppp to domains with stochastic action effects. We show how scppp can be modeled as a Markov decision process (mdp) and how the value-iteration algorithm can be adapted to solve it. This adaptation requires extending value-iteration to support multiple agents and privacy. Then, we present two adaptions of the real-time dynamic programming (rtdp) algorithm, a popular algorithm for solving mdps, designed to solve scppp problems. The first rtdp adaptation, called distributed rtdp (drtdp), yields identical behavior to applying rtdp in a centralized manner on the joint problem. To preserve privacy, drtdp uses a message passing mechanism adopted from the mafs algorithm. The second rtdp adaptation is an approximation of drtdp called public synchronization rtdp (ps-rtdp). ps-rtdp differs from drtdp mainly in its message passing mechanism, where ps-rtdp sends significantly fewer messages than drtdp. We experimented on domains adapted from the deterministic cppp literature by adding different stochastic effects to different actions. The results show that ps-rtdp can reduce the amount of messages compared to drtdp by orders of magnitude thus improving run-time, while producing policies with similar expected costs. |
| ArticleNumber | 22 |
| Author | Shani, Guy Hefner, Tommy Stern, Roni |
| Author_xml | – sequence: 1 givenname: Tommy orcidid: 0000-0002-6538-4979 surname: Hefner fullname: Hefner, Tommy email: tommyh@post.bgu.ac.il organization: Software and Information Engineering Department, Ben Gurion University of the Negev – sequence: 2 givenname: Guy surname: Shani fullname: Shani, Guy organization: Software and Information Engineering Department, Ben Gurion University of the Negev – sequence: 3 givenname: Roni surname: Stern fullname: Stern, Roni organization: Software and Information Engineering Department, Ben Gurion University of the Negev, Information Systems Laboratory, Palo Alto Research Center |
| BookMark | eNp9kE9Lw0AQxRepYFv9Ap4Cnldn_6Y5atEqFPSg52WTTOqWdhN305Z-e7dG8OZpHsN7b4bfhIx865GQawa3DCC_iwykmlHgnEKhlKSHMzJmKhc0l0qOkhaznHIl-AWZxLgGYJprNiYPb8HtbXXMuoARw975VdZtrPcn4Xy23W16R-0KfZ_Fvq0-bexdlaHfu9D6bVrHS3Le2E3Eq985JR9Pj-_zZ7p8XbzM75e04gA9rYUtC25L4KibGquikg3WnMmSC0xPW502UKPFWmFdliVHpqwttdbA6lyIKbkZervQfu0w9mbd7oJPJw3XUkqY8UIlFx9cVWhjDNiYLritDUfDwJxYmYGVSazMDytzSCExhGIy-xWGv-p_Ut8WVXDT |
| Cites_doi | 10.1109/TAC.1982.1102980 10.1287/moor.12.3.441 10.1609/icaps.v26i1.13741 10.1109/CDC.2013.6760239 10.1109/CDC42340.2020.9304015 10.1145/844102.844125 10.1126/science.153.3731.34 10.1609/aaai.v32i1.11584 10.1007/11871842_29 10.1287/moor.16.3.580 10.1145/3133326 10.1016/S0004-3702(01)00108-4 10.1613/jair.4295 10.1609/icaps.v26i1.13753 10.1007/s10458-018-9394-z 10.1109/Allerton.2013.6736549 10.1145/2970030.2970042 10.1016/0004-3702(94)00011-O 10.1137/16M1091162 10.1609/icaps.v22i1.13518 10.1016/j.artint.2012.08.005 10.1016/j.artint.2017.08.007 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10458-022-09554-w |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7454 |
| ExternalDocumentID | 10_1007_s10458_022_09554_w |
| GrantInformation_xml | – fundername: Israel Science Foundation grantid: 210/17; 1210/18 funderid: http://dx.doi.org/10.13039/501100003977 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6J9 6NX 6TJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9O PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c200t-d3ab92ab02e6fdec9c4fed214b23e095a69c40deaed5edbbb2e15aab66601d733 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773922000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1387-2532 |
| IngestDate | Wed Sep 17 23:58:34 EDT 2025 Sat Nov 29 01:33:09 EST 2025 Fri Feb 21 02:45:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Privacy preserving planning Multi-agent planning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c200t-d3ab92ab02e6fdec9c4fed214b23e095a69c40deaed5edbbb2e15aab66601d733 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6538-4979 |
| PQID | 2644408295 |
| PQPubID | 2043870 |
| ParticipantIDs | proquest_journals_2644408295 crossref_primary_10_1007_s10458_022_09554_w springer_journals_10_1007_s10458_022_09554_w |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Autonomous agents and multi-agent systems |
| PublicationTitleAbbrev | Auton Agent Multi-Agent Syst |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | BrafmanRIDomshlakCOn the complexity of planning for agent teams and its implications for single agent planningArtificial Intelligence20131985271304882710.1016/j.artint.2012.08.005 MaliahSShaniGSternRAction dependencies in privacy-preserving multi-agent planningAutonomous Agents and Multi-Agent Systems201832677982110.1007/s10458-018-9394-z Du, Wenliang., & Zhan, Zhijun. (2002). A practical approach to solve secure multi-party computation problems. In Proceedings of the 2002 workshop on New security paradigms, pp 127–135. Trevizan, F. W., Teichteil-Königsbuch, F., & Thiébaux, S. (2017). Efficient solutions for stochastic shortest path problems with dead ends. In UAI. PutermanMLMarkov decision processes: Discrete stochastic dynamic programming2014New YorkWiley0829.90134 Gohari, P., Hale, M., & Topcu, U. (2020). Privacy-preserving policy synthesis in markov decision processes. In 2020 59th IEEE Conference on Decision and Control (CDC) (pp. 6266–6271). IEEE. Kocsis, L., Szepesvári, C. (2006). Bandit based monte-carlo planning. In European conference on machine learning (pp. 282–293). Springer. BellmanRA Markovian decision processJournal of Mathematics and Mechanics19576679684918590078.34101 Ameloot, T. J., & Van den Bussche, J. (2015). On the convergence of cycle detection for navigational reinforcement learning. http://arxiv.org/1511.08724 WitzigJBeckenbachIEiflerLFackeldeyKGleixnerAGreverAWeberMMixed-integer programming for cycle detection in nonreversible Markov processesMultiscale Modeling & Simulation2018161248265376391210.1137/16M1091162 Hauskrecht, M., Meuleau, N., Kaelbling, L. P, Dean, T. L., & Boutilier, C. (2013). Hierarchical solution of markov decision processes using macro-actions. http://arxiv.org/1301.7381 Brafman, R. I., & Domshlak, C. (2008). From one to many: Planning for loosely coupled multi-agent systems. In ICAPS (pp. 28–35). Štolba, M., Fišer, D., & Komenda, A. (2019). Privacy leakage of search-based multi-agent planning algorithms. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 29, pp. 482–490). Maliah, S., Shani, G., & Brafman, R. I. (2016a). Online macro generation for privacy preserving planning. In Twenty-Sixth International Conference on Automated Planning and Scheduling. Gerevini, A. E., Lipovetzky, N., Percassi, F., Saetti, A., & Serina, I. (2019). Best-first width search for multi agent privacy-preserving planning. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 29, pp. 163–171). ŠtolbaMKomendaAThe Madla planner: Multi-agent planning by combination of distributed and local heuristic searchArtificial Intelligence2017252175210370666110.1016/j.artint.2017.08.007 ŠtolbaMTožičkaJKomendaAQuantifying privacy leakage in multi-agent planningTOIT20181832810.1145/3133326 Brafman, R. I. (2015). A privacy preserving algorithm for multi-agent planning and search. In IJCAI (pp. 1530–1536). Maliah, S., Shani, G., & Stern, R. (2016b). Stronger privacy preserving projections for multi-agent planning. In the International Conference on Automated Planning and Scheduling (ICAPS) (pp. 221–229). KolobovA.Planning with Markov decision processes: An AI perspectiveSynthesis Lectures on Artificial Intelligence and Machine Learning20126112101270.68014 Bonet, B., & Geffner, H. (2006). Learning depth-first search: A unified approach to heuristic search in deterministic and non-deterministic settings, and its application to mdps. In In ICAPS (Vol. 6, pp. 142–151). Hefner, T., Stern, R., & Shani, G. (2020). Privacy preserving planning in stochastic environments. In J. C. Beck, O. Buffet, J. Hoffmann, E. Karpas, & S. Sohrabi, (Eds.). Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling, Nancy, France, October 26–30 (pp. 258–262). AAAI Press. https://aaai.org/ojs/index.php/ICAPS/article/view/6669 Brendan, M. H., Likhachev, M., & Gordon, G. J. (2005). Bounded real-time dynamic programming: Rtdp with monotone upper bounds and performance guarantees. In Proceedings of the 22nd international conference on Machine learning (pp. 569–576). ACM. Tožička, J., Štolba, M., & Komenda, A. (2017). The limits of strong privacy preserving multi-agent planning. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 27). BartoAGBradtkeSJSinghSPLearning to act using real-time dynamic programmingArtificial Intelligence1995721–28113810.1016/0004-3702(94)00011-O Amato, C., Chowdhary, G., Geramifard, A., Kemal Üre, N., & Kochenderfer, M. J. (2013). Decentralized control of partially observable markov decision processes. In 52nd IEEE Conference on Decision and Control (pp. 2398–2405). IEEE. Stolba, M., Fiser, D., & Komenda, A. (2019). Privacy leakage of search-based multi-agent planning algorithms. In J. Benton, N. Lipovetzky, E. Onaindia, D. E. Smith, & S. Srivastava (Eds.). Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11–15, 2019 (pp. 482–490). AAAI Press. Boutilier, C. (1999). Sequential optimality and coordination in multiagent systems. In In IJCAI (Vol. 99, pp. 478–485). Maliah, S., Shani, G., & Stern, R. (2014). Privacy preserving landmark detection. In the European Conference on Artificial Intelligence (ECAI) (pp. 597–602). Wu, F., Zilberstein, S., & Chen, X. (2018). Privacy-preserving policy iteration for decentralized pomdps. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI), New Orleans, USA (pp. 4759–4766). BertsekasDDistributed dynamic programmingIEEE Transactions on Automatic Control198227361061668031910.1109/TAC.1982.1102980 PapadimitriouCHTsitsiklisJNThe complexity of Markov decision processesMathematics of Operations Research198712344145090641610.1287/moor.12.3.441 Keller, T., & Eyerich, P. (2012). Prost: Probabilistic planning based on uct. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 22). Maliah, S., Shani, G., & Stern, R. (2016c). Stronger privacy preserving projections for multi-agent planning. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 26). Guestrin, C., Koller, D., & Parr, R. (2001). Max-norm projections for factored mdps. InIn IJCAI (Vol. 17, pp. 673–680). BertsekasDPTsitsiklisJNAn analysis of stochastic shortest path problemsMathematics of Operations Research1991163580595112047110.1287/moor.16.3.580 Venkitasubramaniam, P. (2013). Privacy in stochastic control: A markov decision process perspective. In 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 381–388). IEEE. NissimRBrafmanRIDistributed heuristic forward search for multi-agent planningJAIR201451293332327007510.1613/jair.4295 Littman, M. L., Dean, T. L., & Kaelbling, L. P. (2013). On the complexity of solving markov decision problems. http://arxiv.org/1302.4971 StolbaMTozickaJKomendaAQuantifying privacy leakage in multi-agent planningACM Transactions on Internet Technology201818328:128:2110.1145/3133326 BellmanRDynamic programmingScience19661533731343710.1126/science.153.3731.34 Štolba, M., Komenda, A., & Kovacs, D. L. (2015). Competition of distributed and multiagent planners (codmap). In The International Planning Competition (WIPC-15), (p. 24). Smith, T., & Simmons, R. (2006). Focused real-time dynamic programming for mdps: Squeezing more out of a heuristic. In AAAI (pp. 1227–1232). BonetBGeffnerHPlanning as heuristic searchArtificial Intelligence20011291533183577110.1016/S0004-3702(01)00108-4 9554_CR19 9554_CR39 AG Barto (9554_CR5) 1995; 72 9554_CR16 9554_CR38 9554_CR33 9554_CR10 9554_CR32 9554_CR31 9554_CR30 9554_CR15 9554_CR37 9554_CR36 9554_CR13 9554_CR35 9554_CR12 9554_CR34 R Nissim (9554_CR6) 2014; 51 D Bertsekas (9554_CR21) 1982; 27 CH Papadimitriou (9554_CR24) 1987; 12 9554_CR2 R Bellman (9554_CR17) 1957; 6 9554_CR1 R Bellman (9554_CR3) 1966; 153 M Stolba (9554_CR43) 2018; 18 9554_CR9 9554_CR29 9554_CR28 9554_CR7 DP Bertsekas (9554_CR25) 1991; 16 A. Kolobov (9554_CR4) 2012; 6 9554_CR44 9554_CR20 9554_CR42 9554_CR41 9554_CR26 M Štolba (9554_CR14) 2018; 18 M Štolba (9554_CR27) 2017; 252 9554_CR23 RI Brafman (9554_CR8) 2013; 198 J Witzig (9554_CR22) 2018; 16 B Bonet (9554_CR40) 2001; 129 S Maliah (9554_CR11) 2018; 32 ML Puterman (9554_CR18) 2014 |
| References_xml | – reference: Brafman, R. I. (2015). A privacy preserving algorithm for multi-agent planning and search. In IJCAI (pp. 1530–1536). – reference: BertsekasDPTsitsiklisJNAn analysis of stochastic shortest path problemsMathematics of Operations Research1991163580595112047110.1287/moor.16.3.580 – reference: BonetBGeffnerHPlanning as heuristic searchArtificial Intelligence20011291533183577110.1016/S0004-3702(01)00108-4 – reference: Stolba, M., Fiser, D., & Komenda, A. (2019). Privacy leakage of search-based multi-agent planning algorithms. In J. Benton, N. Lipovetzky, E. Onaindia, D. E. Smith, & S. Srivastava (Eds.). Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11–15, 2019 (pp. 482–490). AAAI Press. – reference: Du, Wenliang., & Zhan, Zhijun. (2002). A practical approach to solve secure multi-party computation problems. In Proceedings of the 2002 workshop on New security paradigms, pp 127–135. – reference: Venkitasubramaniam, P. (2013). Privacy in stochastic control: A markov decision process perspective. In 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 381–388). IEEE. – reference: Tožička, J., Štolba, M., & Komenda, A. (2017). The limits of strong privacy preserving multi-agent planning. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 27). – reference: MaliahSShaniGSternRAction dependencies in privacy-preserving multi-agent planningAutonomous Agents and Multi-Agent Systems201832677982110.1007/s10458-018-9394-z – reference: Maliah, S., Shani, G., & Stern, R. (2016c). Stronger privacy preserving projections for multi-agent planning. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 26). – reference: BellmanRDynamic programmingScience19661533731343710.1126/science.153.3731.34 – reference: BrafmanRIDomshlakCOn the complexity of planning for agent teams and its implications for single agent planningArtificial Intelligence20131985271304882710.1016/j.artint.2012.08.005 – reference: KolobovA.Planning with Markov decision processes: An AI perspectiveSynthesis Lectures on Artificial Intelligence and Machine Learning20126112101270.68014 – reference: ŠtolbaMTožičkaJKomendaAQuantifying privacy leakage in multi-agent planningTOIT20181832810.1145/3133326 – reference: Hefner, T., Stern, R., & Shani, G. (2020). Privacy preserving planning in stochastic environments. In J. C. Beck, O. Buffet, J. Hoffmann, E. Karpas, & S. Sohrabi, (Eds.). Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling, Nancy, France, October 26–30 (pp. 258–262). AAAI Press. https://aaai.org/ojs/index.php/ICAPS/article/view/6669 – reference: Guestrin, C., Koller, D., & Parr, R. (2001). Max-norm projections for factored mdps. InIn IJCAI (Vol. 17, pp. 673–680). – reference: Maliah, S., Shani, G., & Stern, R. (2016b). Stronger privacy preserving projections for multi-agent planning. In the International Conference on Automated Planning and Scheduling (ICAPS) (pp. 221–229). – reference: StolbaMTozickaJKomendaAQuantifying privacy leakage in multi-agent planningACM Transactions on Internet Technology201818328:128:2110.1145/3133326 – reference: Bonet, B., & Geffner, H. (2006). Learning depth-first search: A unified approach to heuristic search in deterministic and non-deterministic settings, and its application to mdps. In In ICAPS (Vol. 6, pp. 142–151). – reference: BellmanRA Markovian decision processJournal of Mathematics and Mechanics19576679684918590078.34101 – reference: Gohari, P., Hale, M., & Topcu, U. (2020). Privacy-preserving policy synthesis in markov decision processes. In 2020 59th IEEE Conference on Decision and Control (CDC) (pp. 6266–6271). IEEE. – reference: Štolba, M., Fišer, D., & Komenda, A. (2019). Privacy leakage of search-based multi-agent planning algorithms. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 29, pp. 482–490). – reference: Brendan, M. H., Likhachev, M., & Gordon, G. J. (2005). Bounded real-time dynamic programming: Rtdp with monotone upper bounds and performance guarantees. In Proceedings of the 22nd international conference on Machine learning (pp. 569–576). ACM. – reference: WitzigJBeckenbachIEiflerLFackeldeyKGleixnerAGreverAWeberMMixed-integer programming for cycle detection in nonreversible Markov processesMultiscale Modeling & Simulation2018161248265376391210.1137/16M1091162 – reference: Wu, F., Zilberstein, S., & Chen, X. (2018). Privacy-preserving policy iteration for decentralized pomdps. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI), New Orleans, USA (pp. 4759–4766). – reference: Trevizan, F. W., Teichteil-Königsbuch, F., & Thiébaux, S. (2017). Efficient solutions for stochastic shortest path problems with dead ends. In UAI. – reference: Littman, M. L., Dean, T. L., & Kaelbling, L. P. (2013). On the complexity of solving markov decision problems. http://arxiv.org/1302.4971 – reference: Brafman, R. I., & Domshlak, C. (2008). From one to many: Planning for loosely coupled multi-agent systems. In ICAPS (pp. 28–35). – reference: Ameloot, T. J., & Van den Bussche, J. (2015). On the convergence of cycle detection for navigational reinforcement learning. http://arxiv.org/1511.08724 – reference: Keller, T., & Eyerich, P. (2012). Prost: Probabilistic planning based on uct. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 22). – reference: ŠtolbaMKomendaAThe Madla planner: Multi-agent planning by combination of distributed and local heuristic searchArtificial Intelligence2017252175210370666110.1016/j.artint.2017.08.007 – reference: Boutilier, C. (1999). Sequential optimality and coordination in multiagent systems. In In IJCAI (Vol. 99, pp. 478–485). – reference: Hauskrecht, M., Meuleau, N., Kaelbling, L. P, Dean, T. L., & Boutilier, C. (2013). Hierarchical solution of markov decision processes using macro-actions. http://arxiv.org/1301.7381 – reference: PutermanMLMarkov decision processes: Discrete stochastic dynamic programming2014New YorkWiley0829.90134 – reference: BartoAGBradtkeSJSinghSPLearning to act using real-time dynamic programmingArtificial Intelligence1995721–28113810.1016/0004-3702(94)00011-O – reference: Štolba, M., Komenda, A., & Kovacs, D. L. (2015). Competition of distributed and multiagent planners (codmap). In The International Planning Competition (WIPC-15), (p. 24). – reference: Gerevini, A. E., Lipovetzky, N., Percassi, F., Saetti, A., & Serina, I. (2019). Best-first width search for multi agent privacy-preserving planning. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 29, pp. 163–171). – reference: Maliah, S., Shani, G., & Stern, R. (2014). Privacy preserving landmark detection. In the European Conference on Artificial Intelligence (ECAI) (pp. 597–602). – reference: Kocsis, L., Szepesvári, C. (2006). Bandit based monte-carlo planning. In European conference on machine learning (pp. 282–293). Springer. – reference: BertsekasDDistributed dynamic programmingIEEE Transactions on Automatic Control198227361061668031910.1109/TAC.1982.1102980 – reference: Smith, T., & Simmons, R. (2006). Focused real-time dynamic programming for mdps: Squeezing more out of a heuristic. In AAAI (pp. 1227–1232). – reference: NissimRBrafmanRIDistributed heuristic forward search for multi-agent planningJAIR201451293332327007510.1613/jair.4295 – reference: Maliah, S., Shani, G., & Brafman, R. I. (2016a). Online macro generation for privacy preserving planning. In Twenty-Sixth International Conference on Automated Planning and Scheduling. – reference: Amato, C., Chowdhary, G., Geramifard, A., Kemal Üre, N., & Kochenderfer, M. J. (2013). Decentralized control of partially observable markov decision processes. In 52nd IEEE Conference on Decision and Control (pp. 2398–2405). IEEE. – reference: PapadimitriouCHTsitsiklisJNThe complexity of Markov decision processesMathematics of Operations Research198712344145090641610.1287/moor.12.3.441 – volume-title: Markov decision processes: Discrete stochastic dynamic programming year: 2014 ident: 9554_CR18 – ident: 9554_CR26 – volume: 27 start-page: 610 issue: 3 year: 1982 ident: 9554_CR21 publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1982.1102980 – volume: 6 start-page: 1 issue: 1 year: 2012 ident: 9554_CR4 publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning – ident: 9554_CR32 – volume: 12 start-page: 441 issue: 3 year: 1987 ident: 9554_CR24 publication-title: Mathematics of Operations Research doi: 10.1287/moor.12.3.441 – ident: 9554_CR12 doi: 10.1609/icaps.v26i1.13741 – ident: 9554_CR36 doi: 10.1109/CDC.2013.6760239 – ident: 9554_CR33 doi: 10.1109/CDC42340.2020.9304015 – ident: 9554_CR16 – ident: 9554_CR30 – ident: 9554_CR39 – ident: 9554_CR20 doi: 10.1145/844102.844125 – volume: 153 start-page: 34 issue: 3731 year: 1966 ident: 9554_CR3 publication-title: Science doi: 10.1126/science.153.3731.34 – ident: 9554_CR13 doi: 10.1609/aaai.v32i1.11584 – volume: 6 start-page: 679 year: 1957 ident: 9554_CR17 publication-title: Journal of Mathematics and Mechanics – ident: 9554_CR37 doi: 10.1007/11871842_29 – ident: 9554_CR44 – volume: 16 start-page: 580 issue: 3 year: 1991 ident: 9554_CR25 publication-title: Mathematics of Operations Research doi: 10.1287/moor.16.3.580 – volume: 18 start-page: 28 issue: 3 year: 2018 ident: 9554_CR14 publication-title: TOIT doi: 10.1145/3133326 – volume: 129 start-page: 5 issue: 1 year: 2001 ident: 9554_CR40 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(01)00108-4 – ident: 9554_CR2 – volume: 51 start-page: 293 year: 2014 ident: 9554_CR6 publication-title: JAIR doi: 10.1613/jair.4295 – ident: 9554_CR23 – ident: 9554_CR42 – ident: 9554_CR28 doi: 10.1609/icaps.v26i1.13753 – ident: 9554_CR29 doi: 10.1609/icaps.v26i1.13753 – volume: 32 start-page: 779 issue: 6 year: 2018 ident: 9554_CR11 publication-title: Autonomous Agents and Multi-Agent Systems doi: 10.1007/s10458-018-9394-z – ident: 9554_CR34 doi: 10.1109/Allerton.2013.6736549 – ident: 9554_CR10 doi: 10.1145/2970030.2970042 – volume: 72 start-page: 81 issue: 1–2 year: 1995 ident: 9554_CR5 publication-title: Artificial Intelligence doi: 10.1016/0004-3702(94)00011-O – ident: 9554_CR19 – volume: 16 start-page: 248 issue: 1 year: 2018 ident: 9554_CR22 publication-title: Multiscale Modeling & Simulation doi: 10.1137/16M1091162 – ident: 9554_CR41 doi: 10.1609/icaps.v22i1.13518 – volume: 198 start-page: 52 year: 2013 ident: 9554_CR8 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2012.08.005 – ident: 9554_CR35 – ident: 9554_CR15 – ident: 9554_CR31 – ident: 9554_CR9 – ident: 9554_CR38 – volume: 252 start-page: 175 year: 2017 ident: 9554_CR27 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2017.08.007 – volume: 18 start-page: 28:1 issue: 3 year: 2018 ident: 9554_CR43 publication-title: ACM Transactions on Internet Technology doi: 10.1145/3133326 – ident: 9554_CR7 – ident: 9554_CR1 |
| SSID | ssj0016261 |
| Score | 2.3060288 |
| Snippet | Collaborative privacy preserving planning (
cppp
) gained much attention in the past decade.
cppp
aims to create solutions for multi agent planning problems... Collaborative privacy preserving planning (cppp) gained much attention in the past decade. cppp aims to create solutions for multi agent planning problems... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Adaptation Algorithms Artificial Intelligence Computer Science Computer Systems Organization and Communication Networks Domains Dynamic programming Iterative algorithms Iterative methods Markov processes Message passing Multiagent systems Privacy Real-time programming Run time (computers) Software Engineering/Programming and Operating Systems Synchronism User Interfaces and Human Computer Interaction |
| Title | Privacy preserving planning in multi-agent stochastic environments |
| URI | https://link.springer.com/article/10.1007/s10458-022-09554-w https://www.proquest.com/docview/2644408295 |
| Volume | 36 |
| WOSCitedRecordID | wos000773922000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7454 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016261 issn: 1387-2532 databaseCode: RSV dateStart: 19980301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYWChPNVCQR7YwFJqO3EyAqJiqipe6hb5FegSqra04t9jOw4tCAZY4-hknX2-73SPD-DMOlUbVymGE04KzIgRWFpYiiMTa8olLxSryCZ4v58Oh9kgNIVN62r3OiXpX-qVZjfmhNjgyY1NY3ixDhvW3aWOsOHu_ukzd2AhehVmpW4GASWhVeZnGV_d0RJjfkuLem_Ta_5vnzuwHdAluqyuwy6smXIPmjVzAwqGvA9Xg8loLtQ7cmWw7rUon9E40BehUYl8mSEWru0KWXSoXoQb54xWu-IO4LF383B9iwObAlbWEmZYUyEzImRETFJoozLFCqNJl0lCjd2pSOyXSBthdGy0lJKYbiyEtPFN1NWc0kNolK-laQEiRUIyThR3kXXBaSbSuOAWKlFpl6Row3mt1HxcDc3Il-ORnXpyq57cqydftKFT6z0PBjTNHU7zXNhxGy5qPS-Xf5d29Lffj2GL-KNytTgdaMwmb-YENtV8NppOTv3F-gBTB8n4 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4omuhFfEYUtQdv2gTa7pY9qpFgREIUDbemr1UuKwGE-O9t9yFo9KDX7WbSTDudbzIz3wCcOqfq4irNcMhJjBmxEisHS3HNBoZyxWPNsmETvNNp9PtRN28KGxfV7kVKMn2pF5rdmBfigidPm8bwbBlWmPNYnjH__uHpM3fgIHoWZjU8BwEleavMzzK-uqM5xvyWFk29TbP8v31uwkaOLtFFdh22YMkm21AuJjeg3JB34LI7Gkylfke-DNa_FskzGubji9AgQWmZIZa-7Qo5dKhfpKdzRotdcbvw2LzuXbVwPk0Ba2cJE2yoVBGRqkZsGBurI81ia0idKUKt26kM3ZeasdKawBqlFLH1QErl4pta3XBK96CUvCZ2HxCJQxJxormPrGNOI9kIYu6gElVuSckKnBVKFcOMNEPM6ZG9eoRTj0jVI2YVqBZ6F7kBjYXHaeks7KAC54We58u_Szv42-8nsNbq3bVF-6ZzewjrJD02X5dThdJk9GaPYFVPJ4Px6Di9ZB_VCczc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60inixPrFaNQdvGtpms5vu0VdRlFLwQW8hT-1lLe3a4r832YetogfxulmGMMlkvmHmmwE4dk7VxVWK4ogRiykxAksHS3HThDpgkllF82ETrNtt9_txb47Fn1W7lynJnNPguzQlaWOobWOO-Ea9QBdI-RZqFE8XYYn6Qnofr98_feYRHFzPQ66270cQkII287OMr65phje_pUgzz9Op_n_P67BWoE50ll-TDVgwySZUy4kOqDDwLTjvjQYTod6RL4_1r0jyjIbFWCM0SFBWfoiFp2MhhxrVi_BtntE8W24bHjtXDxfXuJiygJWzkBTrQMiYCNkkJrLaqFhRazRpUUkC43YqIvelqY0wOjRaSklMKxRCurin2dIsCHagkrwmZhcQsRGJGVHMR9yWBbFoh5Y5CBVItyRFDU5KBfNh3kyDz9ome_Vwpx6eqYdPa1Avz4AXhjXmHr9lM7LDGpyWOp8t_y5t72-_H8FK77LD7266t_uwSrJT8-U6daikozdzAMtqkg7Go8Psvn0A7pnVwA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy+preserving+planning+in+multi-agent+stochastic+environments&rft.jtitle=Autonomous+agents+and+multi-agent+systems&rft.au=Hefner%2C+Tommy&rft.au=Shani%2C+Guy&rft.au=Stern%2C+Roni&rft.date=2022-04-01&rft.pub=Springer+US&rft.issn=1387-2532&rft.eissn=1573-7454&rft.volume=36&rft.issue=1&rft_id=info:doi/10.1007%2Fs10458-022-09554-w&rft.externalDocID=10_1007_s10458_022_09554_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-2532&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-2532&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-2532&client=summon |