Complexity, nonlinearity and high frequency financial data modeling: lessons from computational approaches

This editorial introduces the special issue Complexity, Nonlinearity and High Frequency Financial Data Modeling: Lessons from Computational Approaches in Annals of Operations Research , which brings together 19 contributions exploring advanced methods and applications in the analysis of financial ma...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annals of operations research Ročník 352; číslo 3; s. 353 - 358
Hlavní autori: Amman, Hans, Barnett, William A., Jawadi, Fredj, Tucci, Marco
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.09.2025
Springer Nature B.V
Predmet:
ISSN:0254-5330, 1572-9338
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This editorial introduces the special issue Complexity, Nonlinearity and High Frequency Financial Data Modeling: Lessons from Computational Approaches in Annals of Operations Research , which brings together 19 contributions exploring advanced methods and applications in the analysis of financial markets. The collected works reflect the growing importance of complexity and nonlinear dynamics in understanding modern financial systems, marked by high volatility, interdependence, and structural shifts. The papers are organized thematically into five main areas: (i) complexity and nonlinearity in financial markets, (ii) advanced forecasting and econometric modeling, (iii) network theory, causality, and information flows, (iv) banking, credit risk, and economic growth, and (v) continuous-time and structural model reviews. There is an additional section on methodological innovations, which include time–frequency and multi-scale analysis, recent developments of nonlinear and regime-switching models, machine learning, and complex network approaches. A heartfelt tribute is dedicated to the late Marco Tucci, co-editor of this special issue, whose vision and scholarly contributions significantly shaped its content. Sadly, Marco passed away while we were in the process of compiling this special issue. The editorial concludes by highlighting common methodological threads, synthesizing key insights, and outlining promising avenues for future research in complexity-informed financial modeling.
AbstractList This editorial introduces the special issue Complexity, Nonlinearity and High Frequency Financial Data Modeling: Lessons from Computational Approaches in Annals of Operations Research , which brings together 19 contributions exploring advanced methods and applications in the analysis of financial markets. The collected works reflect the growing importance of complexity and nonlinear dynamics in understanding modern financial systems, marked by high volatility, interdependence, and structural shifts. The papers are organized thematically into five main areas: (i) complexity and nonlinearity in financial markets, (ii) advanced forecasting and econometric modeling, (iii) network theory, causality, and information flows, (iv) banking, credit risk, and economic growth, and (v) continuous-time and structural model reviews. There is an additional section on methodological innovations, which include time–frequency and multi-scale analysis, recent developments of nonlinear and regime-switching models, machine learning, and complex network approaches. A heartfelt tribute is dedicated to the late Marco Tucci, co-editor of this special issue, whose vision and scholarly contributions significantly shaped its content. Sadly, Marco passed away while we were in the process of compiling this special issue. The editorial concludes by highlighting common methodological threads, synthesizing key insights, and outlining promising avenues for future research in complexity-informed financial modeling.
This editorial introduces the special issue Complexity, Nonlinearity and High Frequency Financial Data Modeling: Lessons from Computational Approaches in Annals of Operations Research, which brings together 19 contributions exploring advanced methods and applications in the analysis of financial markets. The collected works reflect the growing importance of complexity and nonlinear dynamics in understanding modern financial systems, marked by high volatility, interdependence, and structural shifts. The papers are organized thematically into five main areas: (i) complexity and nonlinearity in financial markets, (ii) advanced forecasting and econometric modeling, (iii) network theory, causality, and information flows, (iv) banking, credit risk, and economic growth, and (v) continuous-time and structural model reviews. There is an additional section on methodological innovations, which include time–frequency and multi-scale analysis, recent developments of nonlinear and regime-switching models, machine learning, and complex network approaches. A heartfelt tribute is dedicated to the late Marco Tucci, co-editor of this special issue, whose vision and scholarly contributions significantly shaped its content. Sadly, Marco passed away while we were in the process of compiling this special issue. The editorial concludes by highlighting common methodological threads, synthesizing key insights, and outlining promising avenues for future research in complexity-informed financial modeling.
Author Barnett, William A.
Amman, Hans
Jawadi, Fredj
Tucci, Marco
Author_xml – sequence: 1
  givenname: Hans
  surname: Amman
  fullname: Amman, Hans
  organization: University of Amsterdam
– sequence: 2
  givenname: William A.
  surname: Barnett
  fullname: Barnett, William A.
  organization: University of Kansas
– sequence: 3
  givenname: Fredj
  surname: Jawadi
  fullname: Jawadi, Fredj
  email: fredj.jawadi@univ-lille.fr
  organization: Univ. Lille, ULR 4999 - LUMEN
– sequence: 4
  givenname: Marco
  surname: Tucci
  fullname: Tucci, Marco
  organization: University of Siena
BookMark eNp9kE9LxDAQxYOs4O7qF_AU8Gp1kjRN600W_8GCFz2HNE12u7RJTbrg7qc3WsGbp2GY33vzeAs0c94ZhC4J3BAAcRsJ5KLKgPIMihKq7HiC5oQLmlWMlTM0T5c844zBGVrEuAMAQko-R7uV74fOfLbj4Ron0651RoW0YeUavG03W2yD-dgbpw_Ytk453aoON2pUuPeNSfzmDncmRu9iQn2PdXLcj2psvUukGobgld6aeI5OreqiufidS_T--PC2es7Wr08vq_t1pinAmHGdV6WuidFW14aqMq8FFbWlnBpVKGGANrloOGk4rwTwQuvCgrVgFLCq0GyJribf9DgFj6Pc-X1IWaJklDMOjFRVouhE6eBjDMbKIbS9CgdJQH53KqdOZWpO_nQqj0nEJlFMsNuY8Gf9j-oLdbp_BQ
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7TA
7TB
8FD
FR3
JG9
JQ2
KR7
DOI 10.1007/s10479-025-06809-z
DatabaseName CrossRef
Materials Business File
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Engineering Research Database
Materials Business File
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1572-9338
EndPage 358
ExternalDocumentID 10_1007_s10479_025_06809_z
GeographicLocations United States--US
China
Ukraine
Russia
GeographicLocations_xml – name: China
– name: Russia
– name: Ukraine
– name: United States--US
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBO
EBS
EBU
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
ICD
IEA
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N95
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
OAM
OVD
P19
P2P
P62
P9M
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
PUEGO
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
ZYFGU
~8M
~A9
~EX
AAYXX
AFFHD
CITATION
7TA
7TB
8FD
FR3
JG9
JQ2
KR7
ID FETCH-LOGICAL-c200t-5c498cb1ecfcbe2a84b727bf252ea6a7e02d47d51d5597056cc6f0ff0ea0396c3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001568935200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-5330
IngestDate Wed Nov 05 15:03:06 EST 2025
Sat Nov 29 07:28:18 EST 2025
Wed Sep 24 02:06:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords C20
Financial modeling
C22
F10
Machine learning
G10
Nonlinearity
Complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-5c498cb1ecfcbe2a84b727bf252ea6a7e02d47d51d5597056cc6f0ff0ea0396c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://dx.doi.org/10.1007/s10479-025-06809-z
PQID 3253503199
PQPubID 25585
PageCount 6
ParticipantIDs proquest_journals_3253503199
crossref_primary_10_1007_s10479_025_06809_z
springer_journals_10_1007_s10479_025_06809_z
PublicationCentury 2000
PublicationDate 20250900
2025-09-00
20250901
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Annals of operations research
PublicationTitleAbbrev Ann Oper Res
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
SSID ssj0001185
Score 2.4435759
Snippet This editorial introduces the special issue Complexity, Nonlinearity and High Frequency Financial Data Modeling: Lessons from Computational Approaches in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 353
SubjectTerms Banking
Business and Management
Combinatorics
Complexity
COVID-19 vaccines
Credit risk
Digital currencies
Disease transmission
Dynamical systems
Econometrics
Economic development
Economic growth
Editorial
Electronic trading systems
Financial systems
Forecasting
Foreign exchange rates
Futures market
High frequency trading
Immunization
Information flow
Innovations
Machine learning
Multiscale analysis
Nonlinear dynamics
Nonlinearity
Operations Research/Decision Theory
Securities markets
Shadow prices
Structural models
Theory of Computation
Volatility
Yield curve
Title Complexity, nonlinearity and high frequency financial data modeling: lessons from computational approaches
URI https://link.springer.com/article/10.1007/s10479-025-06809-z
https://www.proquest.com/docview/3253503199
Volume 352
WOSCitedRecordID wos001568935200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7oFNGD06k4nZKDNxfo0qZtvIkoHmSIP8ZuJU0TUGTIWoXtrzcva9wUPei5aRLyXpIvyXvfB3CSax1wqSJqfcPQSMeSioIzGlo0YLjiMnLagIObpN9Ph0NxWyeFlT7a3T9JupV6IdktSgRF-VXUixB0ugwrdrtLUbDh7n7wuf5ayOwCF-3Rh2LsZJ0q83MdX7ejOcb89izqdpur5v_6uQWbNbok5zN32IYlPWrBmg9ub0HTiziQek63YGOBkXAHnrEAcmRWky4ZzWg0JOrbETkqCHIbEzOeRV9PiPFsHQTjTIkT1bG1nJEX25j1ZoK5K0S5Jus7R-I5zHW5C49Xlw8X17SWY6DKTqWKchWJVOU9rYzKNZNplFvwkxvGmZaxTHTAiigpeK_AU4oFVkrFJjAm0DIIRazCPWjYjut9ILoIlMVxYY5GirWQBTM6EYhVikRL04ZTb5Xsdca6kc35lXF8M_tn5sY3m7ah4w2X1TOwzELGQ44pWqINXW-o-effazv4W_FDWGfO1hh21oFGNX7TR7Cq3quncnzsPPMDelLhMg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8MgFH7RafxxcDo1Tqdy8KYkXQvt8GaMy4xzMTqX3RpKIdGYxazVZPvrBVrcNHrQcykQ3gM-4L3vAzhJpPQoFwRr31CYyJBjllIfBxoNKCooJ1YbcNCNer3WcMjuyqSwzEW7uydJu1LPJbuRiGEjv2r0IhieLsIS0TuWYcy_fxh8rr8aMtvARX30wSZ2skyV-bmOr9vRDGN-exa1u027-r9-bsJGiS7RReEOW7AgRzVYccHtNag6EQdUzukarM8xEm7DsylgODLzyRkaFTQa3OjbIT5KkeE2RmpcRF9PkHJsHcjEmSIrqqNrOUcvujHtzcjkriBhmyzvHJHjMJfZDjy2r_qXHVzKMWChp1KOqSCsJZKmFEok0uctkmjwkyif-pKHPJKen5Iopc3UnFI0sBIiVJ5SnuRewEIR7EJFd1zuAZKpJzSOCxJjpFAynvpKRsxglTSSXNXh1Fklfi1YN-IZv7IZ31j_Gdvxjad1aDjDxeUMzOLApwE1KVqsDmfOULPPv9e2_7fix7Da6d924-517-YA1nxrdxOC1oBKPn6Th7As3vOnbHxkvfQDEUTkFg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54Y-iD06k4r3nwzYV1bdIuvok6FGUIXvCtpLmAImNsVdBfb07auin6ID43PQk5J82X5jvfATjIjAm4VIy62LCUmVhSoXlII4cGLFdcMl8b8P4q6fe7Dw_ieiqL37PdqyvJIqcBVZoGeXuobXsq8Y0lgmIpVqwdIej7LMwzJNLjef3m_vNb7OCzJzG6YxBFHmWZNvOzja9b0wRvfrsi9TtPr_7_Ma_Acok6yXERJqswYwYNqFWk9wbUq-IOpFzrDViaUipcgydsgNqZ-VuLDAp5DYl174gcaIKax8SOClb2G7GVigdB_inxxXaclSPy7DpzUU4wp4Uo32X5L5JU2uZmvA53vbPbk3Nalmmgyi2xnHLFRFdlHaOsykwouyxzoCizIQ-NjGViglCzRPOOxtOLA1xKxTawNjAyiESsog2YcwM3m0CMDpTDd1GGDouNkDq0JhGIYXRipG3CYeWhdFiocaQT3WWc39S9mfr5Td-bsFM5MS1X5jiNQh5xTN0STWhVTps8_t3a1t-a70Pt-rSXXl30L7dhMfRuR2baDszloxezCwvqNX8cj_Z8wH4AdLDs-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity%2C+nonlinearity+and+high+frequency+financial+data+modeling%3A+lessons+from+computational+approaches&rft.jtitle=Annals+of+operations+research&rft.au=Amman%2C+Hans&rft.au=Barnett%2C+William+A.&rft.au=Jawadi%2C+Fredj&rft.au=Tucci%2C+Marco&rft.date=2025-09-01&rft.pub=Springer+US&rft.issn=0254-5330&rft.eissn=1572-9338&rft.volume=352&rft.issue=3&rft.spage=353&rft.epage=358&rft_id=info:doi/10.1007%2Fs10479-025-06809-z&rft.externalDocID=10_1007_s10479_025_06809_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon