Detection of network anomaly based on hybrid intelligence techniques

Artificial Intelligence could make the use of Intrusion Detection Systems a lot easier than it is today. As always, the hardest thing with learning Artificial Intelligence systems is to make them learn the right things. This research focuses on finding out how to make an Intrusion Detection Systems...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AL-Rafidain journal of computer sciences and mathematics Ročník 9; číslo 2; s. 81 - 98
Hlavní autoři: Shahbaa I. Khaleel, Karam mohammed mahdi saleh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Mosul University 04.12.2012
Témata:
ISSN:1815-4816, 2311-7990
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Artificial Intelligence could make the use of Intrusion Detection Systems a lot easier than it is today. As always, the hardest thing with learning Artificial Intelligence systems is to make them learn the right things. This research focuses on finding out how to make an Intrusion Detection Systems environment learn the preferences and work practices of a security officer, In this research hybrid intelligence system is designed and developed for network intrusion detection, where the research was presented four methods for network anomaly detection using clustering technology and dependence on artificial intelligence techniques, which include a Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) to develop and improve the performance of intrusion detection system. The first method implemented by applying traditional clustering algorithm of KM in a way Kmeans on KDDcup99 data to detect attacks, in the way the second hybrid clustering algorithm HCA method was used where the Kmeans been hybridized with GA. In the third method PSO has been used. Depending on the third method the fourth method Modified PSO (MPSO) has been developed, This was the best method among the four methods used in this research.
AbstractList Artificial Intelligence could make the use of Intrusion Detection Systems a lot easier than it is today. As always, the hardest thing with learning Artificial Intelligence systems is to make them learn the right things. This research focuses on finding out how to make an Intrusion Detection Systems environment learn the preferences and work practices of a security officer, In this research hybrid intelligence system is designed and developed for network intrusion detection, where the research was presented four methods for network anomaly detection using clustering technology and dependence on artificial intelligence techniques, which include a Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) to develop and improve the performance of intrusion detection system. The first method implemented by applying traditional clustering algorithm of KM in a way Kmeans on KDDcup99 data to detect attacks, in the way the second hybrid clustering algorithm HCA method was used where the Kmeans been hybridized with GA. In the third method PSO has been used. Depending on the third method the fourth method Modified PSO (MPSO) has been developed, This was the best method among the four methods used in this research.
Author Shahbaa I. Khaleel
Karam mohammed mahdi saleh
Author_xml – sequence: 1
  surname: Shahbaa I. Khaleel
  fullname: Shahbaa I. Khaleel
– sequence: 2
  surname: Karam mohammed mahdi saleh
  fullname: Karam mohammed mahdi saleh
BookMark eNp9kMtOwzAQAC1UJMrjA7jlB1K8dhLbR9TyqITEBc6Ws9m0LmkMdhDq35O2iAMHTl55NaPVnLNJH3pi7Br4TEptzA2m7WYmOIgZVFIJfsKmQgLkyhg-YVPQUOaFhuqMXaW04ZwLrYTRMGWLBQ2Egw99Ftqsp-ErxLfM9WHrul1Wu0RNNu7Wuzr6JvP9QF3nV9QjZSO37v3HJ6VLdtq6LtHVz3vBXu_vXuaP-dPzw3J--5QjjIfkTtaFIKUKXmLlCFpwSiOQkRWh5g5aUQNigyTGwehGKG0KUABoCioLecGWR28T3Ma-R791cWeD8_bwEeLKujh47MjWIBrFsaoElgXw1kmhXVmgUqakWpjRBUcXxpBSpPbXB9weqtp9Vbuvao9VR0b9YdAPbh9viM53_5DfllF-yQ
CitedBy_id crossref_primary_10_1088_1742_6596_1897_1_012027
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.33899/csmj.2012.163720
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2311-7990
EndPage 98
ExternalDocumentID oai_doaj_org_article_b12d70c662c5410fa328a54c7795eb29
10_33899_csmj_2012_163720
GroupedDBID .K5
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c1990-a3b42e77405c6ae1f1a78c1e936ec80a1f2b1ccdce22b198d278941711c94e543
IEDL.DBID DOA
ISSN 1815-4816
IngestDate Tue Oct 14 14:36:59 EDT 2025
Sat Nov 29 07:29:58 EST 2025
Tue Nov 18 22:12:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1990-a3b42e77405c6ae1f1a78c1e936ec80a1f2b1ccdce22b198d278941711c94e543
OpenAccessLink https://doaj.org/article/b12d70c662c5410fa328a54c7795eb29
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_b12d70c662c5410fa328a54c7795eb29
crossref_primary_10_33899_csmj_2012_163720
crossref_citationtrail_10_33899_csmj_2012_163720
PublicationCentury 2000
PublicationDate 2012-12-04
PublicationDateYYYYMMDD 2012-12-04
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-04
  day: 04
PublicationDecade 2010
PublicationTitle AL-Rafidain journal of computer sciences and mathematics
PublicationYear 2012
Publisher Mosul University
Publisher_xml – name: Mosul University
SSID ssj0002872981
ssib044757849
ssib036241094
ssib046786262
Score 1.8175306
Snippet Artificial Intelligence could make the use of Intrusion Detection Systems a lot easier than it is today. As always, the hardest thing with learning Artificial...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 81
SubjectTerms artificial intelligence
clustering algorithm
genetic algorithm
intrusion detection systems
swarm optimization
Title Detection of network anomaly based on hybrid intelligence techniques
URI https://doaj.org/article/b12d70c662c5410fa328a54c7795eb29
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2311-7990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002872981
  issn: 1815-4816
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYoAB8SnKlzwwIQVix4njESiIASoGQN0i52yLIkhRU5D67zk7Jc0EC1uUXKzk6cl3l9y9I-REaXRyJZSRkk5FwioZlbGzEXdOI4k0l6Fv7flODgb5cKgeOqO-fE1YIw_cAHdeMm5kDFnGIRUsdjrhuU4FSKlSzApD614sVSeZQibhroy2C6Z5VTuZLxIN3B18JM_brzGYN3AVJpqix0sjkbOs-QWaeP25c6jfX30ZGD_D8EX62eAdJ9bR-g9O6WaDrM-jSXrRvMUmWbLVFlm7b6VY623S79tpKLeq6NjRqqn6proav-u3GfVOzFC89jLzrVt01FHopK2-a71Dnm6uH69uo_nohAgY-pdIJ6XgFkO7OIVMW-aYljkwq5LMQh5r5njJAAxYjgcqN74hVjDJGChhU5HskuVqXNk9QmVmlBEpYJzHBRhRMmeNsllscbnMJD0S_2BRwFxX3I-3eCswvwjwFR6-wsNXNPD1yGl7y0cjqvGb8aUHuDX0etjhBLKkmLOk-Isl-_-xyAFZ9c8VilnEIVmeTj7tEVmBr-monhwHAn4Dfv7XSw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+network+anomaly+based+on+hybrid+intelligence+techniques&rft.jtitle=AL-Rafidain+journal+of+computer+sciences+and+mathematics&rft.au=Shahbaa+Khaleel&rft.au=Karam+mahdi+saleh&rft.date=2012-12-04&rft.pub=Mosul+University&rft.issn=1815-4816&rft.eissn=2311-7990&rft.volume=9&rft.issue=2&rft.spage=81&rft.epage=98&rft_id=info:doi/10.33899%2Fcsmj.2012.163720&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b12d70c662c5410fa328a54c7795eb29
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1815-4816&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1815-4816&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1815-4816&client=summon