Detecting Malware Using Deep Neural Networks
This article proposes a method for detecting malicious executable files by analyzing disassembled code. This method is based on a static analysis of assembler instructions of executable files using a special neural network model, whose architecture is also presented in this article. In addition, the...
Gespeichert in:
| Veröffentlicht in: | Automatic control and computer sciences Jg. 58; H. 8; S. 1147 - 1155 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Moscow
Pleiades Publishing
01.12.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0146-4116, 1558-108X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This article proposes a method for detecting malicious executable files by analyzing disassembled code. This method is based on a static analysis of assembler instructions of executable files using a special neural network model, whose architecture is also presented in this article. In addition, the effectiveness of the method is demonstrated using several different metrics, showing a significant reduction in Type-II errors compared to other state-of-the-art methods. The obtained results can be used as a basis for designing systems for thestatic analysis of malware. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0146-4116 1558-108X |
| DOI: | 10.3103/S0146411624700779 |