Detecting Malware Using Deep Neural Networks

This article proposes a method for detecting malicious executable files by analyzing disassembled code. This method is based on a static analysis of assembler instructions of executable files using a special neural network model, whose architecture is also presented in this article. In addition, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatic control and computer sciences Jg. 58; H. 8; S. 1147 - 1155
Hauptverfasser: Ovasapyan, T. D., Volkovskii, M. A., Makarov, A. S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.12.2024
Springer Nature B.V
Schlagworte:
ISSN:0146-4116, 1558-108X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes a method for detecting malicious executable files by analyzing disassembled code. This method is based on a static analysis of assembler instructions of executable files using a special neural network model, whose architecture is also presented in this article. In addition, the effectiveness of the method is demonstrated using several different metrics, showing a significant reduction in Type-II errors compared to other state-of-the-art methods. The obtained results can be used as a basis for designing systems for thestatic analysis of malware.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0146-4116
1558-108X
DOI:10.3103/S0146411624700779