Pseudo-polynomial algorithms for solving the Knapsack Problem with dependencies between items

We consider a new variant of the Knapsack Problem with dependencies between items. In this variant, the set of items is partitioned into subsets with dependencies among them, and an item can be selected from a subset only if at least one item is selected from each of its dependent subsets. We develo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & operations research Ročník 158; s. 106281
Hlavní autoři: Lalou, Mohammed, Kheddouci, Hamamache
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2023
Elsevier
Témata:
ISSN:0305-0548, 1873-765X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider a new variant of the Knapsack Problem with dependencies between items. In this variant, the set of items is partitioned into subsets with dependencies among them, and an item can be selected from a subset only if at least one item is selected from each of its dependent subsets. We develop pseudo-polynomial algorithms to solve this new constrained version in the cases where the dependencies (between the subsets of items rather than items) are represented by out-trees, in-trees, and directed acyclic graphs. We consider both cases, when the weight and profit of each item are similar, which is the classical Subset Sum problem, and the case when they take arbitrary non-negative values. The proposed algorithms run in O(nW) times and spaces for out-trees, while for in-trees and acyclic digraphs it runs in O(nW+mW2) and O(nW+max{mW2,m(nW)}), respectively, where n is the number of items, W is the knapsack capacity, and m is the number of nodes. Experiments on randomly generated knapsack instances with different graphs of dependency are carried out to assess algorithm efficiency, and show the running dependency on different instance parameters. •An Integer Linear Programming model for the handled problem.•Dynamic programming algorithms for solving the problem.•Considering dependencies represented by in-trees, out-tree, and DAG.•The implementation of all the proposed approaches.•The experimental validation on different benchmarks.
AbstractList We consider a new variant of the Knapsack Problem with dependencies between items. In this variant, the set of items is partitioned into subsets with dependencies among them, and an item can be selected from a subset only if at least one item is selected from each of its dependent subsets. We develop pseudo-polynomial algorithms to solve this new constrained version in the cases where the dependencies (between the subsets of items rather than items) are represented by out-trees, in-trees, and directed acyclic graphs. We consider both cases, when the weight and profit of each item are similar, which is the classical Subset Sum problem, and the case when they take arbitrary non-negative values. The proposed algorithms run in O(nW) times and spaces for out-trees, while for in-trees and acyclic digraphs it runs in O(nW+mW2) and O(nW+max{mW2,m(nW)}), respectively, where n is the number of items, W is the knapsack capacity, and m is the number of nodes. Experiments on randomly generated knapsack instances with different graphs of dependency are carried out to assess algorithm efficiency, and show the running dependency on different instance parameters. •An Integer Linear Programming model for the handled problem.•Dynamic programming algorithms for solving the problem.•Considering dependencies represented by in-trees, out-tree, and DAG.•The implementation of all the proposed approaches.•The experimental validation on different benchmarks.
ArticleNumber 106281
Author Kheddouci, Hamamache
Lalou, Mohammed
Author_xml – sequence: 1
  givenname: Mohammed
  orcidid: 0000-0002-8837-4351
  surname: Lalou
  fullname: Lalou, Mohammed
  email: mohammed.lalou@u-bourgogne.fr
  organization: Universite de Bourgogne, UFR-Science et Techniques, Lab LIB, 09 Avenue Alain Savary, 21000 Dijon, France
– sequence: 2
  givenname: Hamamache
  surname: Kheddouci
  fullname: Kheddouci, Hamamache
  organization: Université Claude Bernard Lyon 1, UFR-Informatique, Lab LIRIS, 43 bd du 11 Novembre 1918, F-69622, 69100, Villeurbanne, France
BackLink https://hal.science/hal-04434078$$DView record in HAL
BookMark eNp9kE1LAzEQhoNUsFZ_gLdcPWxNspv9wFMpasWCPSh4kZCP2TZ1NynJ2tJ_75YVj85lmOF9Bua5RCPnHSB0Q8mUEprfbafahykjLO3nnJX0DI1pWaRJkfOPERqTlPCE8Ky8QJcxbklfBaNj9LmK8G18svPN0fnWygbLZu2D7TZtxLUPOPpmb90adxvAL07uotRfeBW8aqDFhz6HDezAGXDaQsQKugOAw7aDNl6h81o2Ea5_-wS9Pz68zRfJ8vXpeT5bJppWZZfIgqsMmDJE6UwBUUybsip4rWRRFVVGKec5U7I2kJe5YYrSvCaMy0oTrjRPJ-h2uLuRjdgF28pwFF5asZgtxWlHsizNSFHuaZ-lQ1YHH2OA-g-gRJxciq3oXYqTSzG47Jn7gYH-ib2FIGL_rNNgbADdCePtP_QPxop_jw
Cites_doi 10.1051/ro/2016049
10.1016/j.cosrev.2018.02.002
10.1016/j.cor.2017.09.019
10.1287/opre.27.3.503
10.1007/s10878-016-0035-7
10.1007/s00500-016-2465-7
10.1016/j.jda.2012.04.011
10.1007/978-3-030-48439-2_41
10.1287/ijoc.2016.0742
10.1287/ijoc.1090.0344
10.1016/j.eswa.2019.113077
10.1111/itor.12381
10.1007/s10878-018-0262-1
10.1016/j.cor.2004.03.002
10.1016/j.ejor.2021.11.004
10.1007/s00186-019-00664-y
10.1287/opre.46.1.17
10.1287/moor.8.1.1
10.1016/j.cor.2016.11.015
10.1007/978-1-4684-2001-2_9
10.1016/j.cor.2015.05.005
10.1007/978-3-319-00080-0
10.1007/s00186-021-00767-5
10.1016/j.dam.2006.08.006
10.1007/s11590-018-1371-6
10.1137/0201008
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Attribution - NonCommercial
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.cor.2023.106281
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1873-765X
ExternalDocumentID oai:HAL:hal-04434078v1
10_1016_j_cor_2023_106281
S0305054823001454
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQXK
AARIN
AAXKI
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
1XC
VOOES
ID FETCH-LOGICAL-c198t-a75b4e2bd0bc4be0b2cd8975fba79794115562bafde686d2b116f025a9c05bc53
ISSN 0305-0548
IngestDate Tue Oct 14 20:53:12 EDT 2025
Sat Nov 29 07:24:43 EST 2025
Tue Dec 03 03:44:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Constrained knapsack problem
In-trees
Out-trees
Dynamic programming
Directed acyclic graphs
Complexity
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c198t-a75b4e2bd0bc4be0b2cd8975fba79794115562bafde686d2b116f025a9c05bc53
ORCID 0000-0002-8837-4351
OpenAccessLink https://hal.science/hal-04434078
ParticipantIDs hal_primary_oai_HAL_hal_04434078v1
crossref_primary_10_1016_j_cor_2023_106281
elsevier_sciencedirect_doi_10_1016_j_cor_2023_106281
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
2023-10
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Computers & operations research
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Martello, Toth (b27) 1990
Lalou, Kheddouci (b24) 2017
Goebbels, Gurski, Komander (b14) 2022; 95
Kleywegt, Papastavrou (b22) 1998; 46
Hajiaghayi, M.T., Jain, K., Konwar, K., Lau, L.C., Mandoiu, I.I., Russell, A., Vazirani, V.V., 2006. The minimum k-colored subgraph problem in haplotyping and DNA primer selection. In: Proceedings of the International Workshop on Bioinformatics Research and Applications. pp. 1–12.
Kellerer, Pferschy, Pisinger (b21) 2004
Amiri (b2) 2020; 143
Bettinelli, Cacchiani, Malaguti (b5) 2017; 29
Cormen, Leiserson, Rivest, Stein (b11) 2001
Sinha, Zoltners (b36) 1979; 27
Beliakov (b4) 2022; 301
Pisinger (b31) 2005; 32
Gurski, Rehs (b17) 2019; 89
Johnson, Niemi (b19) 1983; 8
Salem, Taktak, Mahjoub, Ben-Abdallah (b35) 2018; 22
Kolliopoulos, Steiner (b23) 2007; 155
Pferschy, Scatamacchia (b29) 2018; 25
Bang-Jensen, Gregory (b3) 2008
Lalou, Tahraoui, Kheddouci (b26) 2018; 28
Salem, Hanafi, Taktak, Abdallah (b34) 2017; 51
Gourves, Monnot, Tlilane (b15) 2018; 36
Karp (b20) 1972
Borradaile, Heeringa, Wilfong (b6) 2011
Prüfer (b32) 1918; 27
Mougouei, Powers, Moeini (b28) 2017
Borradaile, Heeringa, Wilfong (b7) 2012; 16
Lalou, Kheddouci (b25) 2019; 13
Cacchiani, Iori, Locatelli, Martello (b9) 2022
Gurski, F., Komander, D., Rehs, C., 2020. Subset sum problems with special digraph constraints. In: Operations Research Proceedings. pp. 339–346.
Chebil, Khemakhem (b10) 2015; 64
Aho, Garey, Ullman (b1) 1972; 1
Bretto (b8) 2013
Pferschy, Schauer (b30) 2017; 33
Puchinger, Raidl, Pferschy (b33) 2010; 22
Furini, Monaci, Traversi (b13) 2018; 90
Della Croce, Salassa, Scatamacchia (b12) 2017; 80
Della Croce (10.1016/j.cor.2023.106281_b12) 2017; 80
Pferschy (10.1016/j.cor.2023.106281_b30) 2017; 33
Sinha (10.1016/j.cor.2023.106281_b36) 1979; 27
Furini (10.1016/j.cor.2023.106281_b13) 2018; 90
Borradaile (10.1016/j.cor.2023.106281_b7) 2012; 16
Bettinelli (10.1016/j.cor.2023.106281_b5) 2017; 29
Goebbels (10.1016/j.cor.2023.106281_b14) 2022; 95
Amiri (10.1016/j.cor.2023.106281_b2) 2020; 143
Cacchiani (10.1016/j.cor.2023.106281_b9) 2022
Borradaile (10.1016/j.cor.2023.106281_b6) 2011
Lalou (10.1016/j.cor.2023.106281_b26) 2018; 28
Aho (10.1016/j.cor.2023.106281_b1) 1972; 1
Martello (10.1016/j.cor.2023.106281_b27) 1990
10.1016/j.cor.2023.106281_b16
Lalou (10.1016/j.cor.2023.106281_b25) 2019; 13
Salem (10.1016/j.cor.2023.106281_b35) 2018; 22
Kolliopoulos (10.1016/j.cor.2023.106281_b23) 2007; 155
10.1016/j.cor.2023.106281_b18
Kellerer (10.1016/j.cor.2023.106281_b21) 2004
Karp (10.1016/j.cor.2023.106281_b20) 1972
Pisinger (10.1016/j.cor.2023.106281_b31) 2005; 32
Gurski (10.1016/j.cor.2023.106281_b17) 2019; 89
Gourves (10.1016/j.cor.2023.106281_b15) 2018; 36
Cormen (10.1016/j.cor.2023.106281_b11) 2001
Bretto (10.1016/j.cor.2023.106281_b8) 2013
Mougouei (10.1016/j.cor.2023.106281_b28) 2017
Beliakov (10.1016/j.cor.2023.106281_b4) 2022; 301
Kleywegt (10.1016/j.cor.2023.106281_b22) 1998; 46
Pferschy (10.1016/j.cor.2023.106281_b29) 2018; 25
Lalou (10.1016/j.cor.2023.106281_b24) 2017
Prüfer (10.1016/j.cor.2023.106281_b32) 1918; 27
Bang-Jensen (10.1016/j.cor.2023.106281_b3) 2008
Puchinger (10.1016/j.cor.2023.106281_b33) 2010; 22
Salem (10.1016/j.cor.2023.106281_b34) 2017; 51
Johnson (10.1016/j.cor.2023.106281_b19) 1983; 8
Chebil (10.1016/j.cor.2023.106281_b10) 2015; 64
References_xml – start-page: 144
  year: 2017
  end-page: 154
  ident: b28
  article-title: An integer linear programming model for binary knapsack problem with dependent item values
  publication-title: Australasian Joint Conference on Artificial Intelligence
– volume: 28
  start-page: 92
  year: 2018
  end-page: 117
  ident: b26
  article-title: The critical node detection problem in networks: A survey
  publication-title: Comp. Sci. Rev.
– volume: 155
  start-page: 889
  year: 2007
  end-page: 897
  ident: b23
  article-title: Partially ordered knapsack and applications to scheduling
  publication-title: Discrete Appl. Math.
– volume: 27
  start-page: 742
  year: 1918
  end-page: 744
  ident: b32
  article-title: Neuer beweis eines satzes über permutationen
  publication-title: Arch. Math. Phys.
– volume: 29
  start-page: 457
  year: 2017
  end-page: 473
  ident: b5
  article-title: A branch-and-bound algorithm for the knapsack problem with conflict graph
  publication-title: INFORMS J. Comput.
– volume: 8
  start-page: 1
  year: 1983
  end-page: 14
  ident: b19
  article-title: On knapsacks, partitions, and a new dynamic programming technique for trees
  publication-title: Math. Oper. Res.
– volume: 25
  start-page: 667
  year: 2018
  end-page: 682
  ident: b29
  article-title: Improved dynamic programming and approximation results for the knapsack problem with setups
  publication-title: Int. Trans. Oper. Res.
– volume: 36
  start-page: 937
  year: 2018
  end-page: 964
  ident: b15
  article-title: Subset sum problems with digraph constraints
  publication-title: J. Comb. Optim.
– reference: Gurski, F., Komander, D., Rehs, C., 2020. Subset sum problems with special digraph constraints. In: Operations Research Proceedings. pp. 339–346.
– year: 2022
  ident: b9
  article-title: Knapsack problems-an overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems
  publication-title: Comput. Oper. Res.
– volume: 301
  start-page: 277
  year: 2022
  end-page: 286
  ident: b4
  article-title: Knapsack problems with dependencies through non-additive measures and Choquet integral
  publication-title: European J. Oper. Res.
– volume: 16
  start-page: 224
  year: 2012
  end-page: 235
  ident: b7
  article-title: The knapsack problem with neighbour constraints
  publication-title: J. Discrete Algorithms
– year: 1990
  ident: b27
  article-title: Knapsack Problems: Algorithms and Computer Implementations
– volume: 64
  start-page: 40
  year: 2015
  end-page: 50
  ident: b10
  article-title: A dynamic programming algorithm for the knapsack problem with setup
  publication-title: Comput. Oper. Res.
– volume: 95
  start-page: 1
  year: 2022
  end-page: 34
  ident: b14
  article-title: The knapsack problem with special neighbor constraints
  publication-title: Math. Methods Oper. Res.
– year: 2013
  ident: b8
  article-title: Hypergraph theory. An introduction
  publication-title: Mathematical Engineering
– year: 2001
  ident: b11
  article-title: Introduction to Algorithms
– start-page: 85
  year: 1972
  end-page: 103
  ident: b20
  article-title: Reducibility among combinatorial problems
  publication-title: Complex. Comput. Comput.
– volume: 1
  start-page: 131
  year: 1972
  end-page: 137
  ident: b1
  article-title: The transitive reduction of a directed graph
  publication-title: SIAM J. Comput.
– volume: 143
  year: 2020
  ident: b2
  article-title: A Lagrangean based solution algorithm for the knapsack problem with setups
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 1345
  year: 2019
  end-page: 1364
  ident: b25
  article-title: A polynomial-time algorithm for finding critical nodes in bipartite permutation graphs
  publication-title: Optim. Lett.
– volume: 27
  start-page: 503
  year: 1979
  end-page: 515
  ident: b36
  article-title: The multiple-choice knapsack problem
  publication-title: Oper. Res.
– volume: 80
  start-page: 61
  year: 2017
  end-page: 67
  ident: b12
  article-title: An exact approach for the 0–1 knapsack problem with setups
  publication-title: Comput. Oper. Res.
– year: 2004
  ident: b21
  article-title: Knapsack Problems, vol. 57
– volume: 33
  start-page: 1300
  year: 2017
  end-page: 1323
  ident: b30
  article-title: Approximation of knapsack problems with conflict and forcing graphs
  publication-title: J. Comb. Optim.
– volume: 22
  start-page: 250
  year: 2010
  end-page: 265
  ident: b33
  article-title: The multidimensional knapsack problem: Structure and algorithms
  publication-title: INFORMS J. Comput.
– volume: 32
  start-page: 2271
  year: 2005
  end-page: 2284
  ident: b31
  article-title: Where are the hard knapsack problems?
  publication-title: Comput. Oper. Res.
– year: 2008
  ident: b3
  article-title: Digraphs: Theory, Algorithms and Applications
– volume: 90
  start-page: 208
  year: 2018
  end-page: 220
  ident: b13
  article-title: Exact approaches for the knapsack problem with setups
  publication-title: Comput. Oper. Res.
– reference: Hajiaghayi, M.T., Jain, K., Konwar, K., Lau, L.C., Mandoiu, I.I., Russell, A., Vazirani, V.V., 2006. The minimum k-colored subgraph problem in haplotyping and DNA primer selection. In: Proceedings of the International Workshop on Bioinformatics Research and Applications. pp. 1–12.
– volume: 51
  start-page: 627
  year: 2017
  end-page: 637
  ident: b34
  article-title: Probabilistic tabu search with multiple neighborhoods for the disjunctively constrained knapsack problem
  publication-title: RAIRO Oper. Res.
– volume: 89
  start-page: 411
  year: 2019
  end-page: 432
  ident: b17
  article-title: Solutions for the knapsack problem with conflict and forcing graphs of bounded clique-width
  publication-title: Math. Methods Oper. Res.
– start-page: 329
  year: 2017
  end-page: 333
  ident: b24
  article-title: Identifying the cyber attack origin with partial observation: a linear regression based approach
  publication-title: 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems, vol. 13
– volume: 22
  start-page: 2025
  year: 2018
  end-page: 2043
  ident: b35
  article-title: Optimization algorithms for the disjunctively constrained knapsack problem
  publication-title: Soft Comput.
– volume: 46
  start-page: 17
  year: 1998
  end-page: 35
  ident: b22
  article-title: The dynamic and stochastic knapsack problem
  publication-title: Oper. Res.
– start-page: 71
  year: 2011
  end-page: 84
  ident: b6
  article-title: The 1-neighbour knapsack problem
  publication-title: International Workshop on Combinatorial Algorithms
– year: 1990
  ident: 10.1016/j.cor.2023.106281_b27
– volume: 51
  start-page: 627
  issue: 3
  year: 2017
  ident: 10.1016/j.cor.2023.106281_b34
  article-title: Probabilistic tabu search with multiple neighborhoods for the disjunctively constrained knapsack problem
  publication-title: RAIRO Oper. Res.
  doi: 10.1051/ro/2016049
– volume: 28
  start-page: 92
  year: 2018
  ident: 10.1016/j.cor.2023.106281_b26
  article-title: The critical node detection problem in networks: A survey
  publication-title: Comp. Sci. Rev.
  doi: 10.1016/j.cosrev.2018.02.002
– volume: 90
  start-page: 208
  year: 2018
  ident: 10.1016/j.cor.2023.106281_b13
  article-title: Exact approaches for the knapsack problem with setups
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2017.09.019
– volume: 27
  start-page: 503
  issue: 3
  year: 1979
  ident: 10.1016/j.cor.2023.106281_b36
  article-title: The multiple-choice knapsack problem
  publication-title: Oper. Res.
  doi: 10.1287/opre.27.3.503
– volume: 33
  start-page: 1300
  year: 2017
  ident: 10.1016/j.cor.2023.106281_b30
  article-title: Approximation of knapsack problems with conflict and forcing graphs
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-016-0035-7
– volume: 22
  start-page: 2025
  issue: 6
  year: 2018
  ident: 10.1016/j.cor.2023.106281_b35
  article-title: Optimization algorithms for the disjunctively constrained knapsack problem
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2465-7
– volume: 16
  start-page: 224
  year: 2012
  ident: 10.1016/j.cor.2023.106281_b7
  article-title: The knapsack problem with neighbour constraints
  publication-title: J. Discrete Algorithms
  doi: 10.1016/j.jda.2012.04.011
– ident: 10.1016/j.cor.2023.106281_b16
  doi: 10.1007/978-3-030-48439-2_41
– volume: 29
  start-page: 457
  issue: 3
  year: 2017
  ident: 10.1016/j.cor.2023.106281_b5
  article-title: A branch-and-bound algorithm for the knapsack problem with conflict graph
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2016.0742
– year: 2001
  ident: 10.1016/j.cor.2023.106281_b11
– year: 2004
  ident: 10.1016/j.cor.2023.106281_b21
– volume: 22
  start-page: 250
  issue: 2
  year: 2010
  ident: 10.1016/j.cor.2023.106281_b33
  article-title: The multidimensional knapsack problem: Structure and algorithms
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1090.0344
– volume: 143
  year: 2020
  ident: 10.1016/j.cor.2023.106281_b2
  article-title: A Lagrangean based solution algorithm for the knapsack problem with setups
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113077
– year: 2008
  ident: 10.1016/j.cor.2023.106281_b3
– volume: 25
  start-page: 667
  issue: 2
  year: 2018
  ident: 10.1016/j.cor.2023.106281_b29
  article-title: Improved dynamic programming and approximation results for the knapsack problem with setups
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12381
– ident: 10.1016/j.cor.2023.106281_b18
– volume: 27
  start-page: 742
  year: 1918
  ident: 10.1016/j.cor.2023.106281_b32
  article-title: Neuer beweis eines satzes über permutationen
  publication-title: Arch. Math. Phys.
– start-page: 144
  year: 2017
  ident: 10.1016/j.cor.2023.106281_b28
  article-title: An integer linear programming model for binary knapsack problem with dependent item values
– volume: 36
  start-page: 937
  issue: 3
  year: 2018
  ident: 10.1016/j.cor.2023.106281_b15
  article-title: Subset sum problems with digraph constraints
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-018-0262-1
– volume: 32
  start-page: 2271
  issue: 9
  year: 2005
  ident: 10.1016/j.cor.2023.106281_b31
  article-title: Where are the hard knapsack problems?
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2004.03.002
– volume: 301
  start-page: 277
  issue: 1
  year: 2022
  ident: 10.1016/j.cor.2023.106281_b4
  article-title: Knapsack problems with dependencies through non-additive measures and Choquet integral
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2021.11.004
– volume: 89
  start-page: 411
  issue: 3
  year: 2019
  ident: 10.1016/j.cor.2023.106281_b17
  article-title: Solutions for the knapsack problem with conflict and forcing graphs of bounded clique-width
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-019-00664-y
– volume: 46
  start-page: 17
  issue: 1
  year: 1998
  ident: 10.1016/j.cor.2023.106281_b22
  article-title: The dynamic and stochastic knapsack problem
  publication-title: Oper. Res.
  doi: 10.1287/opre.46.1.17
– volume: 8
  start-page: 1
  issue: 1
  year: 1983
  ident: 10.1016/j.cor.2023.106281_b19
  article-title: On knapsacks, partitions, and a new dynamic programming technique for trees
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.8.1.1
– volume: 80
  start-page: 61
  year: 2017
  ident: 10.1016/j.cor.2023.106281_b12
  article-title: An exact approach for the 0–1 knapsack problem with setups
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.11.015
– start-page: 85
  year: 1972
  ident: 10.1016/j.cor.2023.106281_b20
  article-title: Reducibility among combinatorial problems
  publication-title: Complex. Comput. Comput.
  doi: 10.1007/978-1-4684-2001-2_9
– volume: 64
  start-page: 40
  year: 2015
  ident: 10.1016/j.cor.2023.106281_b10
  article-title: A dynamic programming algorithm for the knapsack problem with setup
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2015.05.005
– year: 2022
  ident: 10.1016/j.cor.2023.106281_b9
  article-title: Knapsack problems-an overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems
  publication-title: Comput. Oper. Res.
– year: 2013
  ident: 10.1016/j.cor.2023.106281_b8
  article-title: Hypergraph theory. An introduction
  doi: 10.1007/978-3-319-00080-0
– volume: 95
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.cor.2023.106281_b14
  article-title: The knapsack problem with special neighbor constraints
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-021-00767-5
– volume: 155
  start-page: 889
  issue: 8
  year: 2007
  ident: 10.1016/j.cor.2023.106281_b23
  article-title: Partially ordered knapsack and applications to scheduling
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2006.08.006
– start-page: 71
  year: 2011
  ident: 10.1016/j.cor.2023.106281_b6
  article-title: The 1-neighbour knapsack problem
– start-page: 329
  year: 2017
  ident: 10.1016/j.cor.2023.106281_b24
  article-title: Identifying the cyber attack origin with partial observation: a linear regression based approach
– volume: 13
  start-page: 1345
  year: 2019
  ident: 10.1016/j.cor.2023.106281_b25
  article-title: A polynomial-time algorithm for finding critical nodes in bipartite permutation graphs
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-018-1371-6
– volume: 1
  start-page: 131
  issue: 2
  year: 1972
  ident: 10.1016/j.cor.2023.106281_b1
  article-title: The transitive reduction of a directed graph
  publication-title: SIAM J. Comput.
  doi: 10.1137/0201008
SSID ssj0000721
Score 2.4213698
Snippet We consider a new variant of the Knapsack Problem with dependencies between items. In this variant, the set of items is partitioned into subsets with...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 106281
SubjectTerms Complexity
Computer Science
Constrained knapsack problem
Directed acyclic graphs
Dynamic programming
In-trees
Out-trees
Title Pseudo-polynomial algorithms for solving the Knapsack Problem with dependencies between items
URI https://dx.doi.org/10.1016/j.cor.2023.106281
https://hal.science/hal-04434078
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKhxA88FFAjC9ZiCdQUL7tPFawqWNVVYmB-oIiO3GWjpBUTVvGf885tpOUCTQeUCWrclOn9f1yubvc_Q6h13YiKKEyvJQ5FBwUalucSCLXNPAIl2mHDVn1lymZzehiEc0Hgx-mFmZXkLKkl5fR6r-KGuZA2LJ09h_E3S4KE_AehA4jiB3Gawl-XottWlmrqvgpS44lF0BxXq2Xm1xxL7yF0-9MkdRpyVY1S77JggHZWEbFZU1nXLju6zaTa9kymxtiA90Qom7gU63EWqfVaQKhNtA8ZUW1bSKvVS4D5Wmr5XORptU2UZ2z2Xd4AYb6gQi3S2nT0TF9K-8pME8mBgaKSfOdUAqWEs8iYbDY08CKvf2KNleBhQsQhmRudT2YCV3V4WWfOXsy_hTPPxzH05PZ6f6nvXTDyXgKY84Ky_Z9Tz6_3IHbfOCSIKJDdDA-OVp87G7ipCnZa_-CeSDepAb-9nv-ZNLcyE1wvjFWzu6ju9rLwGOFjgdoIMoRumWKHEbonpEd1rp9hO70mCkfoq9XUIQ7FGFAEdYowoAibFCENYqwRBHuowhrFOEGRY_Q5-Ojs_cTS3fisBInohuLkYD7wuWpzROfC5u7SUojEmSckQg0OrgVYEdzlqUipGHqcscJM7CmWZTYAU8C7zEallUpniAsMkETNwOz3Bc-C2GV1IFDwkj6toyFh-iN2cx4pQhXYpOJeBHDzsdy52O184fIN9sda4tRWYIxQOhvX3sFommXlwzrAI5YznXQeHqdg56h292l8BwNN-uteIFuJrvNsl6_1KD6BZ-Dl_k
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo-polynomial+algorithms+for+solving+the+Knapsack+Problem+with+dependencies+between+items&rft.jtitle=Computers+%26+operations+research&rft.au=Lalou%2C+Mohammed&rft.au=Kheddouci%2C+Hamamache&rft.date=2023-10-01&rft.pub=Elsevier&rft.issn=0305-0548&rft.eissn=1873-765X&rft.volume=158&rft_id=info:doi/10.1016%2Fj.cor.2023.106281&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04434078v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon