An integrated federated learning algorithm for short-term load forecasting
Uloženo v:
| Vydáno v: | Electric power systems research Ročník 214; s. 108830 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.01.2023
|
| ISSN: | 0378-7796 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| ArticleNumber | 108830 |
|---|---|
| Author | Wang, Zijin Zhao, Shangrui Wu, Jinran Yang, Yang |
| Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-8706-2831 surname: Yang fullname: Yang, Yang – sequence: 2 givenname: Zijin surname: Wang fullname: Wang, Zijin – sequence: 3 givenname: Shangrui orcidid: 0000-0001-7272-046X surname: Zhao fullname: Zhao, Shangrui – sequence: 4 givenname: Jinran orcidid: 0000-0002-2388-3614 surname: Wu fullname: Wu, Jinran |
| BookMark | eNp9kL1uwyAUhRlSqUnaF-jkF7B7ARvDGEX9VaQu7YwIvnawbIiApW_fWOnUodO5OrrfGb4NWfngkZAHChUFKh7HCs8pVgwYuxRScliRNfBWlm2rxC3ZpDQCgFBtsybvO184n3GIJmNX9Njh9ZrQRO_8UJhpCNHl01z0IRbpFGIuM8a5mILplg6tSfnyeUduejMlvP_NLfl6fvrcv5aHj5e3_e5QWqokKxU2SjSgOl6jYpTVjB37TtS9afkRrG0adgRFwUghm7ZmCJyjRSqBCUtNx7dEXndtDClF7LV12WQXfI7GTZqCXjzoUS8e9OJBXz1cUPYHPUc3m_j9H_QDThtm9g |
| CitedBy_id | crossref_primary_10_1016_j_future_2023_04_034 crossref_primary_10_1109_JIOT_2024_3416527 crossref_primary_10_1155_etep_2556622 crossref_primary_10_1016_j_knosys_2024_111967 crossref_primary_10_3390_smartcities7040082 crossref_primary_10_1007_s13042_024_02302_4 crossref_primary_10_3390_su142416460 crossref_primary_10_1016_j_epsr_2024_110263 crossref_primary_10_1016_j_epsr_2024_111198 crossref_primary_10_1016_j_enbuild_2024_114762 crossref_primary_10_3390_en16176211 crossref_primary_10_1109_TSG_2023_3292382 crossref_primary_10_1109_JIOT_2024_3362587 crossref_primary_10_3390_en17205181 crossref_primary_10_1109_TII_2025_3567377 crossref_primary_10_1016_j_scs_2023_104815 crossref_primary_10_1016_j_energy_2024_133072 crossref_primary_10_1016_j_energy_2024_132344 crossref_primary_10_1007_s44444_025_00012_y crossref_primary_10_1007_s00202_023_02146_1 crossref_primary_10_1016_j_iot_2023_101050 crossref_primary_10_1016_j_engappai_2025_111169 crossref_primary_10_1016_j_segan_2024_101342 crossref_primary_10_1016_j_engappai_2024_109453 crossref_primary_10_1109_JIOT_2025_3528545 crossref_primary_10_1016_j_neucom_2025_129461 crossref_primary_10_3389_feart_2024_1394129 crossref_primary_10_3390_en18102515 crossref_primary_10_3389_fenrg_2024_1378242 |
| Cites_doi | 10.1109/TSG.2022.3146489 10.1016/j.ijepes.2022.108249 10.1155/2021/8261663 10.1145/3298981 10.1109/TII.2018.2867373 10.1109/MIS.2021.3082561 10.1016/j.ijepes.2021.107669 10.3390/en14123654 10.1109/TSP.2013.2288675 10.1109/59.99410 10.1016/j.energy.2021.122367 10.1016/j.epsr.2020.106733 10.1016/j.ins.2020.02.042 10.1016/j.epsr.2022.107837 10.1016/j.iot.2020.100314 10.1016/j.iot.2021.100470 10.1016/j.asoc.2022.108560 10.1145/2939672.2939785 10.1016/j.apenergy.2021.117992 10.1016/j.energy.2011.10.027 10.1016/j.epsr.2020.106265 10.1016/j.epsr.2022.108150 10.1016/j.scs.2022.104034 10.1016/j.energy.2013.04.027 10.1016/j.epsr.2021.107533 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.epsr.2022.108830 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_epsr_2022_108830 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADHUB ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CITATION CS3 DU5 E.L EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- ~HD |
| ID | FETCH-LOGICAL-c1982-9e596509d34e9212422bfd64fa73b0cc552b0910a8685742e033ece18026c1ad3 |
| ISSN | 0378-7796 |
| IngestDate | Sat Nov 29 07:11:52 EST 2025 Tue Nov 18 22:04:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1982-9e596509d34e9212422bfd64fa73b0cc552b0910a8685742e033ece18026c1ad3 |
| ORCID | 0000-0002-2388-3614 0000-0001-7272-046X 0000-0002-8706-2831 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_epsr_2022_108830 crossref_primary_10_1016_j_epsr_2022_108830 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2023 |
| References | Arif (10.1016/j.epsr.2022.108830_b18) 2020 Liu (10.1016/j.epsr.2022.108830_b25) 2020; 521 Liang (10.1016/j.epsr.2022.108830_b31) 2021 Ma (10.1016/j.epsr.2022.108830_b30) 2022 Dragomiretskiy (10.1016/j.epsr.2022.108830_b32) 2013; 62 Liang (10.1016/j.epsr.2022.108830_b33) 2004 (10.1016/j.epsr.2022.108830_b19) 2016 10.1016/j.epsr.2022.108830_b28 Wang (10.1016/j.epsr.2022.108830_b27) 2022; 13 Messaoud (10.1016/j.epsr.2022.108830_b23) 2020; 12 El-Hendawi (10.1016/j.epsr.2022.108830_b6) 2020; 182 Nguyen (10.1016/j.epsr.2022.108830_b16) 2019 Qin (10.1016/j.epsr.2022.108830_b7) 2022; 119 Gholizadeh (10.1016/j.epsr.2022.108830_b22) 2021; 14 Yang (10.1016/j.epsr.2022.108830_b14) 2022; 142 Fekri (10.1016/j.epsr.2022.108830_b17) 2022; 137 Gholizadeh (10.1016/j.epsr.2022.108830_b20) 2022; 17 Hu (10.1016/j.epsr.2022.108830_b21) 2021; 2021 Yang (10.1016/j.epsr.2022.108830_b3) 2019; 10 Cheng (10.1016/j.epsr.2022.108830_b29) 2021; 36 Yang (10.1016/j.epsr.2022.108830_b34) 2022; 306 Lu (10.1016/j.epsr.2022.108830_b10) 2022; 207 Zhao (10.1016/j.epsr.2022.108830_b11) 2022 Aly (10.1016/j.epsr.2022.108830_b12) 2022; 239 Bessani (10.1016/j.epsr.2022.108830_b5) 2020; 189 Dong (10.1016/j.epsr.2022.108830_b9) 2013; 55 Yang (10.1016/j.epsr.2022.108830_b13) 2022; 210 Ma (10.1016/j.epsr.2022.108830_b24) 2021 Hua (10.1016/j.epsr.2022.108830_b4) 2019; 15 Badurally Adam (10.1016/j.epsr.2022.108830_b1) 2011; 36 Yue (10.1016/j.epsr.2022.108830_b15) 2022; 85 Kumar (10.1016/j.epsr.2022.108830_b26) 2020 Papalexopoulos (10.1016/j.epsr.2022.108830_b8) 1990; 5 Lopez (10.1016/j.epsr.2022.108830_b2) 2022; 202 |
| References_xml | – start-page: 5406 year: 2021 ident: 10.1016/j.epsr.2022.108830_b31 article-title: A methodology of trusted data sharing across telecom and finance sector under China’s data security policy – volume: 13 start-page: 2425 year: 2022 ident: 10.1016/j.epsr.2022.108830_b27 article-title: Federated clustering for electricity consumption pattern extraction publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2022.3146489 – year: 2022 ident: 10.1016/j.epsr.2022.108830_b11 article-title: Load forecasting via grey model-least squares support vector machine model and spatial–temporal distribution of electric consumption intensity publication-title: Energy – volume: 142 year: 2022 ident: 10.1016/j.epsr.2022.108830_b14 article-title: A novel decompose-cluster-feedback algorithm for load forecasting with hierarchical structure publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108249 – volume: 2021 year: 2021 ident: 10.1016/j.epsr.2022.108830_b21 article-title: Federated learning: a distributed shared machine learning method publication-title: Complexity doi: 10.1155/2021/8261663 – volume: 10 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.epsr.2022.108830_b3 article-title: Federated machine learning: Concept and applications publication-title: ACM Trans. Intell. Syst. Technol. (TIST) doi: 10.1145/3298981 – start-page: 548 year: 2022 ident: 10.1016/j.epsr.2022.108830_b30 article-title: Research on analysis of power and water consumption data for group tenant identification based on federated learning – volume: 15 start-page: 1788 issue: 3 year: 2019 ident: 10.1016/j.epsr.2022.108830_b4 article-title: Stochastic optimal control for energy internet: A bottom-up energy management approach publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2867373 – start-page: 52 year: 2020 ident: 10.1016/j.epsr.2022.108830_b26 article-title: Federated k-means clustering: A novel edge ai based approach for privacy preservation – volume: 36 start-page: 87 year: 2021 ident: 10.1016/j.epsr.2022.108830_b29 article-title: Secureboost: A lossless federated learning framework publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2021.3082561 – volume: 137 year: 2022 ident: 10.1016/j.epsr.2022.108830_b17 article-title: Distributed load forecasting using smart meter data: Federated learning with recurrent neural networks publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.107669 – volume: 14 issue: 12 year: 2021 ident: 10.1016/j.epsr.2022.108830_b22 article-title: Distributed learning applications in power systems: A review of methods, gaps, and challenges publication-title: Energies doi: 10.3390/en14123654 – volume: 62 start-page: 531 issue: 3 year: 2013 ident: 10.1016/j.epsr.2022.108830_b32 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 5 start-page: 1535 issue: 4 year: 1990 ident: 10.1016/j.epsr.2022.108830_b8 article-title: A regression-based approach to short-term system load forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.99410 – volume: 239 year: 2022 ident: 10.1016/j.epsr.2022.108830_b12 article-title: A hybrid optimized model of adaptive neuro-fuzzy inference system, recurrent kalman filter and neuro-wavelet for wind power forecasting driven by dfig publication-title: Energy doi: 10.1016/j.energy.2021.122367 – volume: 189 year: 2020 ident: 10.1016/j.epsr.2022.108830_b5 article-title: Multiple households very short-term load forecasting using Bayesian networks publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106733 – volume: 521 start-page: 14 year: 2020 ident: 10.1016/j.epsr.2022.108830_b25 article-title: Privacy-preserving federated k-means for proactive caching in next generation cellular networks publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.02.042 – volume: 207 year: 2022 ident: 10.1016/j.epsr.2022.108830_b10 article-title: A short-term load forecasting model based on mixup and transfer learning publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2022.107837 – volume: 12 year: 2020 ident: 10.1016/j.epsr.2022.108830_b23 article-title: A survey on machine learning in internet of things: algorithms, strategies, and applications publication-title: Internet of Things doi: 10.1016/j.iot.2020.100314 – year: 2019 ident: 10.1016/j.epsr.2022.108830_b16 – volume: 17 year: 2022 ident: 10.1016/j.epsr.2022.108830_b20 article-title: Federated learning with hyperparameter-based clustering for electrical load forecasting publication-title: Internet of Things doi: 10.1016/j.iot.2021.100470 – year: 2021 ident: 10.1016/j.epsr.2022.108830_b24 – volume: 119 year: 2022 ident: 10.1016/j.epsr.2022.108830_b7 article-title: Hodrick–prescott filter-based hybrid arima–slfns model with residual decomposition scheme for carbon price forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108560 – ident: 10.1016/j.epsr.2022.108830_b28 doi: 10.1145/2939672.2939785 – start-page: 471 year: 2020 ident: 10.1016/j.epsr.2022.108830_b18 article-title: Electricity load and price forecasting using machine learning algorithms in smart grid: A survey – volume: 306 year: 2022 ident: 10.1016/j.epsr.2022.108830_b34 article-title: An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117992 – volume: 36 start-page: 6763 issue: 12 year: 2011 ident: 10.1016/j.epsr.2022.108830_b1 article-title: Forecasting of peak electricity demand in mauritius using the non-homogeneous gompertz diffusion process publication-title: Energy doi: 10.1016/j.energy.2011.10.027 – start-page: 66 year: 2004 ident: 10.1016/j.epsr.2022.108830_b33 article-title: Privacy-preserving inter-database operations – volume: 182 year: 2020 ident: 10.1016/j.epsr.2022.108830_b6 article-title: An ensemble method of full wavelet packet transform and neural network for short term electrical load forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106265 – volume: 210 year: 2022 ident: 10.1016/j.epsr.2022.108830_b13 article-title: An effective dimensionality reduction approach for short-term load forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2022.108150 – volume: 85 year: 2022 ident: 10.1016/j.epsr.2022.108830_b15 article-title: A prediction approach with mode decomposition-recombination technique for short-term load forecasting publication-title: Sustainable Cities Soc. doi: 10.1016/j.scs.2022.104034 – volume: 55 start-page: 1104 year: 2013 ident: 10.1016/j.epsr.2022.108830_b9 article-title: Short-term solar irradiance forecasting using exponential smoothing state space model publication-title: Energy doi: 10.1016/j.energy.2013.04.027 – volume: 202 year: 2022 ident: 10.1016/j.epsr.2022.108830_b2 article-title: Automatic classification of special days for short-term load forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2021.107533 – year: 2016 ident: 10.1016/j.epsr.2022.108830_b19 |
| SSID | ssj0006975 |
| Score | 2.5533137 |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 108830 |
| Title | An integrated federated learning algorithm for short-term load forecasting |
| Volume | 214 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0378-7796 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006975 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEOiJ9iDJAP3Kqgxnac-FhNQ7DDhMSQql0i_wpNlaVV2k778_FLHCcMgdiBSxpZrhXlfXrv-cvz9xD6QJSgihsHXhf-I5YxHakisZGWiZTKymxOi7bZRHpxkS2X4utkUvRnYW6qtK6z21ux_a-mdmPO2HB09h7mDou6AXfvjO6uzuzu-k-GX9SDBoSZFSAW0d5VPQkiqx-bptyvrtsSw93KJeAROOhZtZEGxqyWu30f0nrWvm2XU-rZFtqqeQFo-OQwYsPAeXj6GX4Hrr4buyrXZYDi1Uq2JO03IKybQxkmH1pclXXjYesZCUJHjIQ_ieV2pmnadartvSyJ2chPxs65dd9jfnPhHZuwdtF4B3qthHwcJv-ql30njoXqwr5wbZ3DGjmskXdrPEBHJE1ENkVHiy9ny_MQs7loJZnDk_vjVV0l4N0nGaUwo1zk8il64jcReNEZ_xma2Po5ejySlnyBzhc1HmCAAwxwDwMcYICdyfEAAwwwwCMYvETfP51dnn6OfN-MSMfCbZiETQQIIxrKrHCpCSNEFYazQqZUzbVOEqIgTZQZz5KUETun1GoLWoBcx9LQV2hab2r7GuG5lcIIK7gygmWSqbiAsgFLreEx1_wYxf2ryLUXlYfeJlX-ZyMco1n4z7aTVPnL7Df3mn2CHg2IfIum--Zg36GH-mZf7pr33uo_AbxJcX4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+federated+learning+algorithm+for+short-term+load+forecasting&rft.jtitle=Electric+power+systems+research&rft.au=Yang%2C+Yang&rft.au=Wang%2C+Zijin&rft.au=Zhao%2C+Shangrui&rft.au=Wu%2C+Jinran&rft.date=2023-01-01&rft.issn=0378-7796&rft.volume=214&rft.spage=108830&rft_id=info:doi/10.1016%2Fj.epsr.2022.108830&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2022_108830 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |