An integrated federated learning algorithm for short-term load forecasting

Uloženo v:
Podrobná bibliografie
Vydáno v:Electric power systems research Ročník 214; s. 108830
Hlavní autoři: Yang, Yang, Wang, Zijin, Zhao, Shangrui, Wu, Jinran
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.01.2023
ISSN:0378-7796
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
ArticleNumber 108830
Author Wang, Zijin
Zhao, Shangrui
Wu, Jinran
Yang, Yang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-8706-2831
  surname: Yang
  fullname: Yang, Yang
– sequence: 2
  givenname: Zijin
  surname: Wang
  fullname: Wang, Zijin
– sequence: 3
  givenname: Shangrui
  orcidid: 0000-0001-7272-046X
  surname: Zhao
  fullname: Zhao, Shangrui
– sequence: 4
  givenname: Jinran
  orcidid: 0000-0002-2388-3614
  surname: Wu
  fullname: Wu, Jinran
BookMark eNp9kL1uwyAUhRlSqUnaF-jkF7B7ARvDGEX9VaQu7YwIvnawbIiApW_fWOnUodO5OrrfGb4NWfngkZAHChUFKh7HCs8pVgwYuxRScliRNfBWlm2rxC3ZpDQCgFBtsybvO184n3GIJmNX9Njh9ZrQRO_8UJhpCNHl01z0IRbpFGIuM8a5mILplg6tSfnyeUduejMlvP_NLfl6fvrcv5aHj5e3_e5QWqokKxU2SjSgOl6jYpTVjB37TtS9afkRrG0adgRFwUghm7ZmCJyjRSqBCUtNx7dEXndtDClF7LV12WQXfI7GTZqCXjzoUS8e9OJBXz1cUPYHPUc3m_j9H_QDThtm9g
CitedBy_id crossref_primary_10_1016_j_future_2023_04_034
crossref_primary_10_1109_JIOT_2024_3416527
crossref_primary_10_1155_etep_2556622
crossref_primary_10_1016_j_knosys_2024_111967
crossref_primary_10_3390_smartcities7040082
crossref_primary_10_1007_s13042_024_02302_4
crossref_primary_10_3390_su142416460
crossref_primary_10_1016_j_epsr_2024_110263
crossref_primary_10_1016_j_epsr_2024_111198
crossref_primary_10_1016_j_enbuild_2024_114762
crossref_primary_10_3390_en16176211
crossref_primary_10_1109_TSG_2023_3292382
crossref_primary_10_1109_JIOT_2024_3362587
crossref_primary_10_3390_en17205181
crossref_primary_10_1109_TII_2025_3567377
crossref_primary_10_1016_j_scs_2023_104815
crossref_primary_10_1016_j_energy_2024_133072
crossref_primary_10_1016_j_energy_2024_132344
crossref_primary_10_1007_s44444_025_00012_y
crossref_primary_10_1007_s00202_023_02146_1
crossref_primary_10_1016_j_iot_2023_101050
crossref_primary_10_1016_j_engappai_2025_111169
crossref_primary_10_1016_j_segan_2024_101342
crossref_primary_10_1016_j_engappai_2024_109453
crossref_primary_10_1109_JIOT_2025_3528545
crossref_primary_10_1016_j_neucom_2025_129461
crossref_primary_10_3389_feart_2024_1394129
crossref_primary_10_3390_en18102515
crossref_primary_10_3389_fenrg_2024_1378242
Cites_doi 10.1109/TSG.2022.3146489
10.1016/j.ijepes.2022.108249
10.1155/2021/8261663
10.1145/3298981
10.1109/TII.2018.2867373
10.1109/MIS.2021.3082561
10.1016/j.ijepes.2021.107669
10.3390/en14123654
10.1109/TSP.2013.2288675
10.1109/59.99410
10.1016/j.energy.2021.122367
10.1016/j.epsr.2020.106733
10.1016/j.ins.2020.02.042
10.1016/j.epsr.2022.107837
10.1016/j.iot.2020.100314
10.1016/j.iot.2021.100470
10.1016/j.asoc.2022.108560
10.1145/2939672.2939785
10.1016/j.apenergy.2021.117992
10.1016/j.energy.2011.10.027
10.1016/j.epsr.2020.106265
10.1016/j.epsr.2022.108150
10.1016/j.scs.2022.104034
10.1016/j.energy.2013.04.027
10.1016/j.epsr.2021.107533
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.epsr.2022.108830
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_epsr_2022_108830
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADHUB
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CITATION
CS3
DU5
E.L
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
~HD
ID FETCH-LOGICAL-c1982-9e596509d34e9212422bfd64fa73b0cc552b0910a8685742e033ece18026c1ad3
ISSN 0378-7796
IngestDate Sat Nov 29 07:11:52 EST 2025
Tue Nov 18 22:04:14 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1982-9e596509d34e9212422bfd64fa73b0cc552b0910a8685742e033ece18026c1ad3
ORCID 0000-0002-2388-3614
0000-0001-7272-046X
0000-0002-8706-2831
ParticipantIDs crossref_citationtrail_10_1016_j_epsr_2022_108830
crossref_primary_10_1016_j_epsr_2022_108830
PublicationCentury 2000
PublicationDate 2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-00
PublicationDecade 2020
PublicationTitle Electric power systems research
PublicationYear 2023
References Arif (10.1016/j.epsr.2022.108830_b18) 2020
Liu (10.1016/j.epsr.2022.108830_b25) 2020; 521
Liang (10.1016/j.epsr.2022.108830_b31) 2021
Ma (10.1016/j.epsr.2022.108830_b30) 2022
Dragomiretskiy (10.1016/j.epsr.2022.108830_b32) 2013; 62
Liang (10.1016/j.epsr.2022.108830_b33) 2004
(10.1016/j.epsr.2022.108830_b19) 2016
10.1016/j.epsr.2022.108830_b28
Wang (10.1016/j.epsr.2022.108830_b27) 2022; 13
Messaoud (10.1016/j.epsr.2022.108830_b23) 2020; 12
El-Hendawi (10.1016/j.epsr.2022.108830_b6) 2020; 182
Nguyen (10.1016/j.epsr.2022.108830_b16) 2019
Qin (10.1016/j.epsr.2022.108830_b7) 2022; 119
Gholizadeh (10.1016/j.epsr.2022.108830_b22) 2021; 14
Yang (10.1016/j.epsr.2022.108830_b14) 2022; 142
Fekri (10.1016/j.epsr.2022.108830_b17) 2022; 137
Gholizadeh (10.1016/j.epsr.2022.108830_b20) 2022; 17
Hu (10.1016/j.epsr.2022.108830_b21) 2021; 2021
Yang (10.1016/j.epsr.2022.108830_b3) 2019; 10
Cheng (10.1016/j.epsr.2022.108830_b29) 2021; 36
Yang (10.1016/j.epsr.2022.108830_b34) 2022; 306
Lu (10.1016/j.epsr.2022.108830_b10) 2022; 207
Zhao (10.1016/j.epsr.2022.108830_b11) 2022
Aly (10.1016/j.epsr.2022.108830_b12) 2022; 239
Bessani (10.1016/j.epsr.2022.108830_b5) 2020; 189
Dong (10.1016/j.epsr.2022.108830_b9) 2013; 55
Yang (10.1016/j.epsr.2022.108830_b13) 2022; 210
Ma (10.1016/j.epsr.2022.108830_b24) 2021
Hua (10.1016/j.epsr.2022.108830_b4) 2019; 15
Badurally Adam (10.1016/j.epsr.2022.108830_b1) 2011; 36
Yue (10.1016/j.epsr.2022.108830_b15) 2022; 85
Kumar (10.1016/j.epsr.2022.108830_b26) 2020
Papalexopoulos (10.1016/j.epsr.2022.108830_b8) 1990; 5
Lopez (10.1016/j.epsr.2022.108830_b2) 2022; 202
References_xml – start-page: 5406
  year: 2021
  ident: 10.1016/j.epsr.2022.108830_b31
  article-title: A methodology of trusted data sharing across telecom and finance sector under China’s data security policy
– volume: 13
  start-page: 2425
  year: 2022
  ident: 10.1016/j.epsr.2022.108830_b27
  article-title: Federated clustering for electricity consumption pattern extraction
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2022.3146489
– year: 2022
  ident: 10.1016/j.epsr.2022.108830_b11
  article-title: Load forecasting via grey model-least squares support vector machine model and spatial–temporal distribution of electric consumption intensity
  publication-title: Energy
– volume: 142
  year: 2022
  ident: 10.1016/j.epsr.2022.108830_b14
  article-title: A novel decompose-cluster-feedback algorithm for load forecasting with hierarchical structure
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108249
– volume: 2021
  year: 2021
  ident: 10.1016/j.epsr.2022.108830_b21
  article-title: Federated learning: a distributed shared machine learning method
  publication-title: Complexity
  doi: 10.1155/2021/8261663
– volume: 10
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.epsr.2022.108830_b3
  article-title: Federated machine learning: Concept and applications
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/3298981
– start-page: 548
  year: 2022
  ident: 10.1016/j.epsr.2022.108830_b30
  article-title: Research on analysis of power and water consumption data for group tenant identification based on federated learning
– volume: 15
  start-page: 1788
  issue: 3
  year: 2019
  ident: 10.1016/j.epsr.2022.108830_b4
  article-title: Stochastic optimal control for energy internet: A bottom-up energy management approach
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2867373
– start-page: 52
  year: 2020
  ident: 10.1016/j.epsr.2022.108830_b26
  article-title: Federated k-means clustering: A novel edge ai based approach for privacy preservation
– volume: 36
  start-page: 87
  year: 2021
  ident: 10.1016/j.epsr.2022.108830_b29
  article-title: Secureboost: A lossless federated learning framework
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2021.3082561
– volume: 137
  year: 2022
  ident: 10.1016/j.epsr.2022.108830_b17
  article-title: Distributed load forecasting using smart meter data: Federated learning with recurrent neural networks
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107669
– volume: 14
  issue: 12
  year: 2021
  ident: 10.1016/j.epsr.2022.108830_b22
  article-title: Distributed learning applications in power systems: A review of methods, gaps, and challenges
  publication-title: Energies
  doi: 10.3390/en14123654
– volume: 62
  start-page: 531
  issue: 3
  year: 2013
  ident: 10.1016/j.epsr.2022.108830_b32
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 5
  start-page: 1535
  issue: 4
  year: 1990
  ident: 10.1016/j.epsr.2022.108830_b8
  article-title: A regression-based approach to short-term system load forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.99410
– volume: 239
  year: 2022
  ident: 10.1016/j.epsr.2022.108830_b12
  article-title: A hybrid optimized model of adaptive neuro-fuzzy inference system, recurrent kalman filter and neuro-wavelet for wind power forecasting driven by dfig
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122367
– volume: 189
  year: 2020
  ident: 10.1016/j.epsr.2022.108830_b5
  article-title: Multiple households very short-term load forecasting using Bayesian networks
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106733
– volume: 521
  start-page: 14
  year: 2020
  ident: 10.1016/j.epsr.2022.108830_b25
  article-title: Privacy-preserving federated k-means for proactive caching in next generation cellular networks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.02.042
– volume: 207
  year: 2022
  ident: 10.1016/j.epsr.2022.108830_b10
  article-title: A short-term load forecasting model based on mixup and transfer learning
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.107837
– volume: 12
  year: 2020
  ident: 10.1016/j.epsr.2022.108830_b23
  article-title: A survey on machine learning in internet of things: algorithms, strategies, and applications
  publication-title: Internet of Things
  doi: 10.1016/j.iot.2020.100314
– year: 2019
  ident: 10.1016/j.epsr.2022.108830_b16
– volume: 17
  year: 2022
  ident: 10.1016/j.epsr.2022.108830_b20
  article-title: Federated learning with hyperparameter-based clustering for electrical load forecasting
  publication-title: Internet of Things
  doi: 10.1016/j.iot.2021.100470
– year: 2021
  ident: 10.1016/j.epsr.2022.108830_b24
– volume: 119
  year: 2022
  ident: 10.1016/j.epsr.2022.108830_b7
  article-title: Hodrick–prescott filter-based hybrid arima–slfns model with residual decomposition scheme for carbon price forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108560
– ident: 10.1016/j.epsr.2022.108830_b28
  doi: 10.1145/2939672.2939785
– start-page: 471
  year: 2020
  ident: 10.1016/j.epsr.2022.108830_b18
  article-title: Electricity load and price forecasting using machine learning algorithms in smart grid: A survey
– volume: 306
  year: 2022
  ident: 10.1016/j.epsr.2022.108830_b34
  article-title: An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117992
– volume: 36
  start-page: 6763
  issue: 12
  year: 2011
  ident: 10.1016/j.epsr.2022.108830_b1
  article-title: Forecasting of peak electricity demand in mauritius using the non-homogeneous gompertz diffusion process
  publication-title: Energy
  doi: 10.1016/j.energy.2011.10.027
– start-page: 66
  year: 2004
  ident: 10.1016/j.epsr.2022.108830_b33
  article-title: Privacy-preserving inter-database operations
– volume: 182
  year: 2020
  ident: 10.1016/j.epsr.2022.108830_b6
  article-title: An ensemble method of full wavelet packet transform and neural network for short term electrical load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106265
– volume: 210
  year: 2022
  ident: 10.1016/j.epsr.2022.108830_b13
  article-title: An effective dimensionality reduction approach for short-term load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.108150
– volume: 85
  year: 2022
  ident: 10.1016/j.epsr.2022.108830_b15
  article-title: A prediction approach with mode decomposition-recombination technique for short-term load forecasting
  publication-title: Sustainable Cities Soc.
  doi: 10.1016/j.scs.2022.104034
– volume: 55
  start-page: 1104
  year: 2013
  ident: 10.1016/j.epsr.2022.108830_b9
  article-title: Short-term solar irradiance forecasting using exponential smoothing state space model
  publication-title: Energy
  doi: 10.1016/j.energy.2013.04.027
– volume: 202
  year: 2022
  ident: 10.1016/j.epsr.2022.108830_b2
  article-title: Automatic classification of special days for short-term load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2021.107533
– year: 2016
  ident: 10.1016/j.epsr.2022.108830_b19
SSID ssj0006975
Score 2.5533137
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 108830
Title An integrated federated learning algorithm for short-term load forecasting
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006975
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEOiJ9iDJAP3Kqgxnac-FhNQ7DDhMSQql0i_wpNlaVV2k778_FLHCcMgdiBSxpZrhXlfXrv-cvz9xD6QJSgihsHXhf-I5YxHakisZGWiZTKymxOi7bZRHpxkS2X4utkUvRnYW6qtK6z21ux_a-mdmPO2HB09h7mDou6AXfvjO6uzuzu-k-GX9SDBoSZFSAW0d5VPQkiqx-bptyvrtsSw93KJeAROOhZtZEGxqyWu30f0nrWvm2XU-rZFtqqeQFo-OQwYsPAeXj6GX4Hrr4buyrXZYDi1Uq2JO03IKybQxkmH1pclXXjYesZCUJHjIQ_ieV2pmnadartvSyJ2chPxs65dd9jfnPhHZuwdtF4B3qthHwcJv-ql30njoXqwr5wbZ3DGjmskXdrPEBHJE1ENkVHiy9ny_MQs7loJZnDk_vjVV0l4N0nGaUwo1zk8il64jcReNEZ_xma2Po5ejySlnyBzhc1HmCAAwxwDwMcYICdyfEAAwwwwCMYvETfP51dnn6OfN-MSMfCbZiETQQIIxrKrHCpCSNEFYazQqZUzbVOEqIgTZQZz5KUETun1GoLWoBcx9LQV2hab2r7GuG5lcIIK7gygmWSqbiAsgFLreEx1_wYxf2ryLUXlYfeJlX-ZyMco1n4z7aTVPnL7Df3mn2CHg2IfIum--Zg36GH-mZf7pr33uo_AbxJcX4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+federated+learning+algorithm+for+short-term+load+forecasting&rft.jtitle=Electric+power+systems+research&rft.au=Yang%2C+Yang&rft.au=Wang%2C+Zijin&rft.au=Zhao%2C+Shangrui&rft.au=Wu%2C+Jinran&rft.date=2023-01-01&rft.issn=0378-7796&rft.volume=214&rft.spage=108830&rft_id=info:doi/10.1016%2Fj.epsr.2022.108830&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2022_108830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon