A topological splitting of the space of meromorphic germs in several variables and continuous evaluators

We prove a topological decomposition of the space of meromorphic germs at zero in several variables with prescribed linear poles as a sum of spaces of holomorphic and polar germs. Evaluating the resulting holomorphic projection at zero gives rise to a continuous evaluator (at zero) on the space of m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex analysis and its synergies Ročník 10; číslo 1
Hlavní autoři: Dahmen, Rafael, Paycha, Sylvie, Schmeding, Alexander
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.03.2024
Témata:
ISSN:2524-7581, 2197-120X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We prove a topological decomposition of the space of meromorphic germs at zero in several variables with prescribed linear poles as a sum of spaces of holomorphic and polar germs. Evaluating the resulting holomorphic projection at zero gives rise to a continuous evaluator (at zero) on the space of meromorphic germs in several variables. Our constructions are carried out in the framework of Silva spaces and use an inner product on the underlying space of variables. They generalise to several variables, the topological direct decomposition of meromorphic germs at zero as sums of holomorphic and polar germs previously derived by the first and third author and provide a topological refinement of a known algebraic decomposition of such spaces previously derived by the second author and collaborators.
ISSN:2524-7581
2197-120X
DOI:10.1007/s40627-023-00130-w