27337 Characterizing Temporal Patterns in Glucose Dysregulation Following SARS-CoV-2 Infection

ABSTRACT IMPACT: Understanding the longitudinal glucose changes following SARS-CoV-2 infection can inform point-of-care guidelines and elucidate the viral hypothesis of diabetes mellitus pathogenesis. OBJECTIVES/GOALS: Hyperglycemia has emerged as an important manifestation of SARS-CoV-2 infection i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of clinical and translational science Vol. 5; no. s1; p. 46
Main Authors: Mistry, Sejal, Gouripeddi, Ramkiran, Facelli, Julio C.
Format: Journal Article
Language:English
Published: Cambridge, UK Cambridge University Press 01.03.2021
Subjects:
ISSN:2059-8661, 2059-8661
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT IMPACT: Understanding the longitudinal glucose changes following SARS-CoV-2 infection can inform point-of-care guidelines and elucidate the viral hypothesis of diabetes mellitus pathogenesis. OBJECTIVES/GOALS: Hyperglycemia has emerged as an important manifestation of SARS-CoV-2 infection in both diabetic and non-diabetic patients. Whether clinically-detectable glycemic changes persist following SARS-CoV-2 infection remain to be elucidated. This work aims to characterize temporal patterns in glucose dysregulation following SARS-CoV-2 infection. METHODS/STUDY POPULATION: Electronic health records of patients with a diagnosis of COVID-19, positive laboratory test for SARS-CoV-2, and negative history of Diabetes Mellitus prior to infection were extracted from the TriNetX database. 7,502 patients with at least one blood glucose value 2 years to 2 weeks before, 2 weeks before to 2 weeks after, and 2 weeks after to 1 year after COVID-19 diagnosis were used for analysis. Temporal patterns are characterized by training state-of-the-art clustering algorithms, including fuzzy short time-series clustering, k-means for longitudinal data, and spectral clustering. Clustering performance is evaluated using internal evaluation metrics of the Silhouette coefficient, Calinski-Harabasz score, and Davies Bouldin index. RESULTS/ANTICIPATED RESULTS: Based on the success of prior clustering methods with random blood glucose measurements, we anticipate that the proposed time-series clustering algorithms will appropriately characterize temporal patterns of glycemic dysregulation. The best performing algorithm based on interval evaluation metrics will be selected for further analysis. Associations between blood glucose values and cluster membership will be evaluated using Kruskal-Wallis one-way ANOVA and effect size will be calculated using unbiased Cohen’s d. Clinical phenotypes for each cluster will be characterized in terms of current diagnoses, prior medication use, pertinent laboratory tests, and vital signs. DISCUSSION/SIGNIFICANCE OF FINDINGS: A clearer understanding of the longitudinal glucose changes following SARS-CoV-2 infection can elucidate clinically-detectable patterns of glycemic dysregulation, identify sub-phenotypes of patients who are more susceptive to glycemic dysregulation, and inform appropriate point-of-care guidelines.
AbstractList ABSTRACT IMPACT: Understanding the longitudinal glucose changes following SARS-CoV-2 infection can inform point-of-care guidelines and elucidate the viral hypothesis of diabetes mellitus pathogenesis. OBJECTIVES/GOALS: Hyperglycemia has emerged as an important manifestation of SARS-CoV-2 infection in both diabetic and non-diabetic patients. Whether clinically-detectable glycemic changes persist following SARS-CoV-2 infection remain to be elucidated. This work aims to characterize temporal patterns in glucose dysregulation following SARS-CoV-2 infection. METHODS/STUDY POPULATION: Electronic health records of patients with a diagnosis of COVID-19, positive laboratory test for SARS-CoV-2, and negative history of Diabetes Mellitus prior to infection were extracted from the TriNetX database. 7,502 patients with at least one blood glucose value 2 years to 2 weeks before, 2 weeks before to 2 weeks after, and 2 weeks after to 1 year after COVID-19 diagnosis were used for analysis. Temporal patterns are characterized by training state-of-the-art clustering algorithms, including fuzzy short time-series clustering, k-means for longitudinal data, and spectral clustering. Clustering performance is evaluated using internal evaluation metrics of the Silhouette coefficient, Calinski-Harabasz score, and Davies Bouldin index. RESULTS/ANTICIPATED RESULTS: Based on the success of prior clustering methods with random blood glucose measurements, we anticipate that the proposed time-series clustering algorithms will appropriately characterize temporal patterns of glycemic dysregulation. The best performing algorithm based on interval evaluation metrics will be selected for further analysis. Associations between blood glucose values and cluster membership will be evaluated using Kruskal-Wallis one-way ANOVA and effect size will be calculated using unbiased Cohen’s d. Clinical phenotypes for each cluster will be characterized in terms of current diagnoses, prior medication use, pertinent laboratory tests, and vital signs. DISCUSSION/SIGNIFICANCE OF FINDINGS: A clearer understanding of the longitudinal glucose changes following SARS-CoV-2 infection can elucidate clinically-detectable patterns of glycemic dysregulation, identify sub-phenotypes of patients who are more susceptive to glycemic dysregulation, and inform appropriate point-of-care guidelines.
Author Gouripeddi, Ramkiran
Mistry, Sejal
Facelli, Julio C.
AuthorAffiliation Department of Biomedical Informatics University of Utah
AuthorAffiliation_xml – name: Department of Biomedical Informatics University of Utah
Author_xml – sequence: 1
  givenname: Sejal
  surname: Mistry
  fullname: Mistry, Sejal
– sequence: 2
  givenname: Ramkiran
  surname: Gouripeddi
  fullname: Gouripeddi, Ramkiran
– sequence: 3
  givenname: Julio C.
  surname: Facelli
  fullname: Facelli, Julio C.
BookMark eNpVkUtLw0AUhQdR8LnzB-QHmDqPzCMbQeqrICi2unS4mbmpkXSmTFJFf72pFdHVvZzD-Rbn7JPtEAMScszoiFGmT13fjTjlbCS52CJ7nMoyN0qx7T__LjnquldKKTNcKSH2yDPXQuhs_AIJXI-p-WzCPJvhYhkTtNk99IMYuqwJ2XW7crHD7OKjSzhftdA3MWRXsW3j-zo0PX-Y5uP4lPNsEmp0a_uQ7NTQdnj0cw_I49XlbHyT395dT8bnt7ljpRI5lAVFCWXFHcVCombaKFdDKYHXWjHHjAdkXoLyrmBVZSrtZQGy9hXnBRUHZLLh-givdpmaBaQPG6Gx30JMcwupb1yLlnuUrCgNUMDCQQWaUVFKLr2uAUszsM42rOWqWqB3GPqhin_Q_05oXuw8vlljuFaGD4CTDcCl2A1d1b9ZRu16KztsZddb2WEr8QU2B4pi
ContentType Journal Article
Copyright The Association for Clinical and Translational Science 2021 2021 The Association for Clinical and Translational Science
Copyright_xml – notice: The Association for Clinical and Translational Science 2021 2021 The Association for Clinical and Translational Science
DBID AAYXX
CITATION
5PM
DOA
DOI 10.1017/cts.2021.523
DatabaseName CrossRef
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2059-8661
EndPage 46
ExternalDocumentID oai_doaj_org_article_2de51498a0ae4caba71039525d7fae98
PMC8827682
10_1017_cts_2021_523
GroupedDBID 09C
09E
0R~
8FE
8FH
AABES
AABWE
AAGFV
AAKTX
AASVR
AAYXX
ABGDZ
ABQTM
ABROB
ABVZP
ABXHF
ACAJB
ACBEK
ACDLN
ACGFS
ACUIJ
ADAZD
ADBBV
ADDNB
ADKIL
ADOVH
ADVJH
AEBAK
AEHGV
AEMTJ
AEYHU
AFFHD
AFKQG
AFKRA
AFLVW
AFZFC
AGABE
AGJUD
AHIPN
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AJCYY
AKMAY
ALMA_UNASSIGNED_HOLDINGS
ANPSP
AQJOH
ARCSS
AUXHV
AZGZS
BBLKV
BBNVY
BCNDV
BENPR
BHPHI
BLZWO
BMAJL
BRIRG
CBIIA
CCPQU
CCQAD
CFAFE
CITATION
CJCSC
DOHLZ
GROUPED_DOAJ
HCIFZ
HYE
IKXGN
IOEEP
IPYYG
JHPGK
JKPOH
JQKCU
JVRFK
KCGVB
KFECR
LK8
M7P
M~E
NIKVX
OK1
PHGZM
PHGZT
PQGLB
RCA
ROL
RPM
S6U
SAAAG
T9M
WFFJZ
ZYDXJ
5PM
ID FETCH-LOGICAL-c1963-a940e5a9b2c0e45e71786cfa95a2f761c18dae1d5a6dc41bb8b7d54a5fdb22403
IEDL.DBID DOA
ISSN 2059-8661
IngestDate Tue Oct 14 19:05:25 EDT 2025
Tue Nov 04 01:37:07 EST 2025
Sat Nov 29 01:40:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue s1
Language English
License http://creativecommons.org/licenses/by/4.0
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1963-a940e5a9b2c0e45e71786cfa95a2f761c18dae1d5a6dc41bb8b7d54a5fdb22403
OpenAccessLink https://doaj.org/article/2de51498a0ae4caba71039525d7fae98
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_2de51498a0ae4caba71039525d7fae98
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8827682
crossref_primary_10_1017_cts_2021_523
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
PublicationTitle Journal of clinical and translational science
PublicationYear 2021
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0001826633
Score 2.1359406
Snippet ABSTRACT IMPACT: Understanding the longitudinal glucose changes following SARS-CoV-2 infection can inform point-of-care guidelines and elucidate the viral...
SourceID doaj
pubmedcentral
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 46
SubjectTerms Data Science/Biostatistics/Informatics
Precision Medicine
Title 27337 Characterizing Temporal Patterns in Glucose Dysregulation Following SARS-CoV-2 Infection
URI https://pubmed.ncbi.nlm.nih.gov/PMC8827682
https://doaj.org/article/2de51498a0ae4caba71039525d7fae98
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAEN
  databaseName: Cambridge University Press Wholly Gold Open Access Journals
  customDbUrl:
  eissn: 2059-8661
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001826633
  issn: 2059-8661
  databaseCode: IKXGN
  dateStart: 20170201
  isFulltext: true
  titleUrlDefault: http://journals.cambridge.org/action/login
  providerName: Cambridge University Press
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2059-8661
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001826633
  issn: 2059-8661
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2059-8661
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001826633
  issn: 2059-8661
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2059-8661
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001826633
  issn: 2059-8661
  databaseCode: M7P
  dateStart: 20170201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2059-8661
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001826633
  issn: 2059-8661
  databaseCode: BENPR
  dateStart: 20170201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMctVDGwIBAgykseYDQkdhwnYyktIEFV0VJ1InL8gEooRW0AwcBnx49QNSwsLBnyuuQu0fnif34HwDHBmljKNyKaEhRRU7ByqQMksdQ0ThhTrkvE6Ib1esl4nPaXWn1ZTZjHA3vHnWGpTE5PEx5wFQmec2YnLymmkmmuUvebb8DSpWLKfV0xo-aYkErpbhnRorRwbhyeUkxqOcih-n9LIpdyTHcDrFeDQ9jyF7UJVlSxBR5M6icMthdk5U-TbeDQI6WeYd8BMos5nBTw0uvP4cWHMfpYNeaCXRPq6bs9aNC6G6D2dIQwvK5EWMU2uO92hu0rVHVFQMK-LYinUaAoT3MsAhVRZeqxJBaap5RjzeJQhInkKpSUx1JEYZ4nOZM04lTL3OZvsgMaxbRQuwBqKrDkhHAWyEhZklxo5wEtsDA3JnATnPz4KXvx8IvMq8JYZvyZWX9mxp9NcG6duNjHIqvdChPIrApk9lcgm4DVQlA7W31LMXlyIGxTHZhqCe_9h_l9sGZvx8vLDkCjnL2qQ7Aq3srJfHbkni6zvP3qfAOzItgV
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=27337+Characterizing+Temporal+Patterns+in+Glucose+Dysregulation+Following+SARS-CoV-2+Infection&rft.jtitle=Journal+of+clinical+and+translational+science&rft.au=Sejal+Mistry&rft.au=Ramkiran+Gouripeddi&rft.au=Julio+C.+Facelli&rft.date=2021-03-01&rft.pub=Cambridge+University+Press&rft.eissn=2059-8661&rft.volume=5&rft.spage=46&rft.epage=46&rft_id=info:doi/10.1017%2Fcts.2021.523&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2de51498a0ae4caba71039525d7fae98
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2059-8661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2059-8661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2059-8661&client=summon