Constrained Monotone k -Submodular Function Maximization Using Multiobjective Evolutionary Algorithms With Theoretical Guarantee

The problem of maximizing monotone <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-submodular functions under a size constraint arises in many applications, and it is NP-hard. In this paper, we propose a new approach which employs a mult...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 22; číslo 4; s. 595 - 608
Hlavní autoři: Qian, Chao, Shi, Jing-Cheng, Tang, Ke, Zhou, Zhi-Hua
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.08.2018
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The problem of maximizing monotone <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-submodular functions under a size constraint arises in many applications, and it is NP-hard. In this paper, we propose a new approach which employs a multiobjective evolutionary algorithm to maximize the given objective and minimize the size simultaneously. For general cases, we prove that the proposed method can obtain the asymptotically tight approximation guarantee, which was also achieved by the greedy algorithm. Moreover, we further give instances where the proposed approach performs better than the greedy algorithm on applications of influence maximization, information coverage maximization, and sensor placement. Experimental results on real-world data sets exhibit the superior performance of the proposed approach.
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2017.2749263