LHTAM: Low-power and high-speed approximate multiplier for tiny inexact computing systems

The numerical computations related to certain applications can usually withstand a small amount of error. So in these types of applications, such as data mining, encoding algorithms, image processing, machine learning, signal processing, and other error-resilient applications, accurate computing can...

Full description

Saved in:
Bibliographic Details
Published in:Computers & electrical engineering Vol. 123; p. 110215
Main Authors: Izadi, Azin, Jamshidi, Vahid
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.04.2025
Subjects:
ISSN:0045-7906
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The numerical computations related to certain applications can usually withstand a small amount of error. So in these types of applications, such as data mining, encoding algorithms, image processing, machine learning, signal processing, and other error-resilient applications, accurate computing can be replaced with approximate computing in order to reduce circuit delay and power consumption. In these applications, a certain degree of error is acceptable. Multiplication is a fundamental arithmetic operation in computer systems. However, performing it accurately using multipliers — key components in these systems — can result in increased circuit delay, higher power consumption, and greater use of area. Therefore, presenting an optimal multiplier would be considered as a significant advantage for inexact computing systems. In this paper, we propose a new Mitchell algorithm-based approximate multiplier that applied error-reduction factors can be used. The proposed design has been implemented in the Cadence software environment by using TSMC 45 nm standard-cell library and a supplied voltage of 1.1v. The simulation results indicate an average reduction of 31.7% in area, 64.7% in energy, and 36.1% in circuit delay relative to those achieved in previous works. The mean relative error distance (MRED) of the proposed method is 2.6%.
AbstractList The numerical computations related to certain applications can usually withstand a small amount of error. So in these types of applications, such as data mining, encoding algorithms, image processing, machine learning, signal processing, and other error-resilient applications, accurate computing can be replaced with approximate computing in order to reduce circuit delay and power consumption. In these applications, a certain degree of error is acceptable. Multiplication is a fundamental arithmetic operation in computer systems. However, performing it accurately using multipliers — key components in these systems — can result in increased circuit delay, higher power consumption, and greater use of area. Therefore, presenting an optimal multiplier would be considered as a significant advantage for inexact computing systems. In this paper, we propose a new Mitchell algorithm-based approximate multiplier that applied error-reduction factors can be used. The proposed design has been implemented in the Cadence software environment by using TSMC 45 nm standard-cell library and a supplied voltage of 1.1v. The simulation results indicate an average reduction of 31.7% in area, 64.7% in energy, and 36.1% in circuit delay relative to those achieved in previous works. The mean relative error distance (MRED) of the proposed method is 2.6%.
ArticleNumber 110215
Author Jamshidi, Vahid
Izadi, Azin
Author_xml – sequence: 1
  givenname: Azin
  surname: Izadi
  fullname: Izadi, Azin
  email: azinizadi@eng.uk.ac.ir
– sequence: 2
  givenname: Vahid
  orcidid: 0000-0002-4249-7890
  surname: Jamshidi
  fullname: Jamshidi, Vahid
  email: vjamshidi@uk.ac.ir
BookMark eNqNkLFOwzAQhj0UibbwDuYBEuykdmq2qgKKFMRSBibLsc-tqySO7JS2b0-qMDAyne50_3__fTM0aX0LCD1QklJC-eMh1b7poAYN7S7NSMZSSklG2QRNCVmwpBCE36JZjAcy9Jwup-ir3GxX70-49Kek8ycIWLUG791un8QOwGDVdcGfXaN6wM2x7l1Xu2HL-oB7116wa-GsdI-vp4_DZIfjJfbQxDt0Y1Ud4f63ztHny_N2vUnKj9e39apMNBWsT7jRfAGWsMwKAooXeUWEBssYo7kVKjcZrXSuKl1wK5bGUg65EQUloHWV63yOxOirg48xgJVdGOKGi6REXrnIg_zDRV65yJHLoF2PWhgCfg9_yagdtBqMC6B7abz7h8sPfsV3-Q
Cites_doi 10.1109/TC.2018.2880742
10.1109/TC.2020.2992113
10.1109/TCSI.2018.2856245
10.1109/TCSI.2018.2792902
10.1016/j.comnet.2021.108074
10.1109/TCSI.2021.3069168
10.1145/3094124
10.1109/TCAD.2018.2857262
10.1007/s42979-023-01864-4
10.1109/TVLSI.2014.2333366
10.1016/j.mejo.2023.105783
10.1109/TSUSC.2020.3004980
10.1109/TEC.1962.5219391
10.1109/JPROC.2020.3029453
10.1109/ACCESS.2020.2970968
10.1109/TVLSI.2016.2643639
10.1145/1837274.1837411
10.1016/j.micpro.2010.07.001
10.1145/2228360.2228450
10.1109/TCAD.2022.3184928
10.1109/JPROC.2020.3006451
10.1109/TETC.2019.2929100
10.1145/3583781.3590262
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compeleceng.2025.110215
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compeleceng_2025_110215
S0045790625001582
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c195t-6dc64ef052f90ea673b09cef55513f9a3d21bc3abc76f98df16e3d9710eccb3c3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001440359400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7906
IngestDate Sat Nov 29 08:00:07 EST 2025
Sat Apr 26 15:41:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Energy-consumption
Area
Mitchell’s multiplication algorithm
Approximate computing
Delay
Approximate multiplier
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c195t-6dc64ef052f90ea673b09cef55513f9a3d21bc3abc76f98df16e3d9710eccb3c3
ORCID 0000-0002-4249-7890
ParticipantIDs crossref_primary_10_1016_j_compeleceng_2025_110215
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2025_110215
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationTitle Computers & electrical engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Prabakaran, Mrazek, Vasicek, Sekanina, Shafique (b16) 2020
Oelund James, Kim Sunwoong. ILAFD: Accuracy-Configurable Floating-Point Divider Using an Approximate Reciprocal and an Iterative Logarithmic Multiplier. In: Proceedings of the great lakes symposium on VLSI 2023. 2023, p. 639–44.
Jiang, Liu, Liu, Lombardi, Han (b12) 2017; 13
Pilipović, Bulić, Lotrič (b3) 2021; 68
Choudhary, Bhargava, Suhag (b8) 2023; 4
Mitchell (b18) 1962
Liu, Zhang, McLarnon, O’Neill, Montuschi, Lombardi (b2) 2019; 9
Ansari, Cockburn, Han (b20) 2020; 70
Du, Chen, Cheng, Shan (b10) 2023; 136
Yu, Tasnim, Tan (b23) 2022
Kulkarni, Gupta, Ercegovac (b27) 2011
Jiang, Liu, Lombardi, Han (b24) 2018; 66
Saadat, Bokhari, Parameswaran (b21) 2018; 37
Narayanamoorthy, Moghaddam, Liu, Park, Kim (b26) 2014; 23
Chippa Vinay K, Mohapatra Debabrata, Raghunathan Anand, Roy Kaushik, Chakradhar Srimat T. Scalable effort hardware design: Exploiting algorithmic resilience for energy efficiency. In: Proceedings of the 47th design automation conference. 2010, p. 555–60.
Kim, Del Barrio, Oliveira, Hermida, Bagherzadeh (b30) 2018; 68
Ebrahimi, Ullah, Kumar (b28) 2020
Yin, Wang, Waris, Liu, Han, Lombardi (b7) 2020; 6
Sabetzadeh, Moaiyeri, Ahmadinejad (b11) 2022; 70
Saadat, Javaid, Ignjatovic, Parameswaran (b22) 2020
Han, Orshansky (b1) 2013
Babić, Avramović, Bulić (b13) 2011; 35
Van Toan, Lee (b15) 2020; 8
Liu, Xu, Wang, Wang, Montuschi, Lombardi (b19) 2018; 65
Huang Jiawei, Lach John, Robins Gabriel. A methodology for energy-quality tradeoff using imprecise hardware. In: Proceedings of the 49th annual design automation conference. 2012, p. 504–9.
Jiang, Santiago, Mo, Liu, Han (b29) 2020; 108
Ometov, Shubina, Klus, Skibińska, Saafi, Pascacio (b5) 2021; 193
Ebrahimi, Zaid, Wijtvliet, Kumar (b17) 2022; 42
Venkataramani, Sun, Wang, Chen, Choi, Kang (b9) 2020; 108
Venkatachalam, Ko (b25) 2017; 25
Prabakaran (10.1016/j.compeleceng.2025.110215_b16) 2020
Kulkarni (10.1016/j.compeleceng.2025.110215_b27) 2011
Saadat (10.1016/j.compeleceng.2025.110215_b22) 2020
Yu (10.1016/j.compeleceng.2025.110215_b23) 2022
Narayanamoorthy (10.1016/j.compeleceng.2025.110215_b26) 2014; 23
Ansari (10.1016/j.compeleceng.2025.110215_b20) 2020; 70
Ebrahimi (10.1016/j.compeleceng.2025.110215_b28) 2020
Van Toan (10.1016/j.compeleceng.2025.110215_b15) 2020; 8
Venkatachalam (10.1016/j.compeleceng.2025.110215_b25) 2017; 25
10.1016/j.compeleceng.2025.110215_b14
Jiang (10.1016/j.compeleceng.2025.110215_b12) 2017; 13
Kim (10.1016/j.compeleceng.2025.110215_b30) 2018; 68
Liu (10.1016/j.compeleceng.2025.110215_b2) 2019; 9
Venkataramani (10.1016/j.compeleceng.2025.110215_b9) 2020; 108
Mitchell (10.1016/j.compeleceng.2025.110215_b18) 1962
Jiang (10.1016/j.compeleceng.2025.110215_b24) 2018; 66
Han (10.1016/j.compeleceng.2025.110215_b1) 2013
Du (10.1016/j.compeleceng.2025.110215_b10) 2023; 136
Jiang (10.1016/j.compeleceng.2025.110215_b29) 2020; 108
Yin (10.1016/j.compeleceng.2025.110215_b7) 2020; 6
Pilipović (10.1016/j.compeleceng.2025.110215_b3) 2021; 68
Choudhary (10.1016/j.compeleceng.2025.110215_b8) 2023; 4
10.1016/j.compeleceng.2025.110215_b4
Saadat (10.1016/j.compeleceng.2025.110215_b21) 2018; 37
Sabetzadeh (10.1016/j.compeleceng.2025.110215_b11) 2022; 70
10.1016/j.compeleceng.2025.110215_b6
Liu (10.1016/j.compeleceng.2025.110215_b19) 2018; 65
Ebrahimi (10.1016/j.compeleceng.2025.110215_b17) 2022; 42
Babić (10.1016/j.compeleceng.2025.110215_b13) 2011; 35
Ometov (10.1016/j.compeleceng.2025.110215_b5) 2021; 193
References_xml – volume: 23
  start-page: 1180
  year: 2014
  end-page: 1184
  ident: b26
  article-title: Energy-efficient approximate multiplication for digital signal processing and classification applications
  publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst
– start-page: 1
  year: 2013
  end-page: 6
  ident: b1
  article-title: Approximate computing: An emerging paradigm for energy-efficient design
  publication-title: 2013 18th IEEE European test symposium
– volume: 13
  start-page: 1
  year: 2017
  end-page: 34
  ident: b12
  article-title: A review, classification, and comparative evaluation of approximate arithmetic circuits
  publication-title: ACM J Emerg Technol Comput Syst (JETC)
– volume: 65
  start-page: 2856
  year: 2018
  end-page: 2868
  ident: b19
  article-title: Design and evaluation of approximate logarithmic multipliers for low power error-tolerant applications
  publication-title: IEEE Trans Circuits Syst I Regul Pap
– start-page: 37
  year: 2022
  end-page: 42
  ident: b23
  article-title: HEALM: Hardware-efficient approximate logarithmic multiplier with reduced error
  publication-title: 2022 27th Asia and south Pacific design automation conference
– volume: 136
  year: 2023
  ident: b10
  article-title: Design and analysis of leading one/zero detector based approximate multipliers
  publication-title: Microelectron J
– start-page: 346
  year: 2011
  end-page: 351
  ident: b27
  article-title: Trading accuracy for power with an underdesigned multiplier architecture
  publication-title: 2011 24th internatioal conference on VLSI design
– volume: 6
  start-page: 612
  year: 2020
  end-page: 625
  ident: b7
  article-title: Design and analysis of energy-efficient dynamic range approximate logarithmic multipliers for machine learning
  publication-title: IEEE Trans Sustain Comput
– volume: 108
  start-page: 2232
  year: 2020
  end-page: 2250
  ident: b9
  article-title: Efficient AI system design with cross-layer approximate computing
  publication-title: Proc IEEE
– volume: 193
  year: 2021
  ident: b5
  article-title: A survey on wearable technology: History, state-of-the-art and current challenges
  publication-title: Comput Netw
– start-page: 512
  year: 1962
  end-page: 517
  ident: b18
  article-title: Computer multiplication and division using binary logarithms
  publication-title: IRE Trans Electron Comput
– volume: 70
  start-page: 776
  year: 2022
  end-page: 780
  ident: b11
  article-title: An ultra-efficient approximate multiplier with error compensation for error-resilient applications
  publication-title: IEEE Trans Circuits Syst II: Express Briefs
– volume: 35
  start-page: 23
  year: 2011
  end-page: 33
  ident: b13
  article-title: An iterative logarithmic multiplier
  publication-title: Microprocess Microsyst
– volume: 25
  start-page: 1782
  year: 2017
  end-page: 1786
  ident: b25
  article-title: Design of power and area efficient approximate multipliers
  publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst
– volume: 68
  start-page: 660
  year: 2018
  end-page: 675
  ident: b30
  article-title: Efficient Mitchell’s approximate log multipliers for convolutional neural networks
  publication-title: IEEE Trans Comput
– volume: 37
  start-page: 2623
  year: 2018
  end-page: 2635
  ident: b21
  article-title: Minimally biased multipliers for approximate integer and floating-point multiplication
  publication-title: IEEE Trans Comput-Aided Des Integr Circuits Syst
– volume: 42
  start-page: 712
  year: 2022
  end-page: 725
  ident: b17
  article-title: RAPID: Approximate pipelined soft multipliers and dividers for high throughput and energy efficiency
  publication-title: IEEE Trans Comput-Aided Des Integr Circuits Syst
– start-page: 1
  year: 2020
  end-page: 6
  ident: b16
  article-title: Approxfpgas: Embracing asic-based approximate arithmetic components for fpga-based systems
  publication-title: 2020 57th ACM/IEEE design automation conference
– volume: 9
  start-page: 1609
  year: 2019
  end-page: 1624
  ident: b2
  article-title: Design and analysis of majority logic-based approximate adders and multipliers
  publication-title: IEEE Trans Emerg Top Comput
– volume: 4
  start-page: 506
  year: 2023
  ident: b8
  article-title: Designing of energy-efficient approximate multiplier circuit for processing unit of IoT devices
  publication-title: SN Comput Sci
– volume: 8
  start-page: 25481
  year: 2020
  end-page: 25497
  ident: b15
  article-title: FPGA-based multi-level approximate multipliers for high-performance error-resilient applications
  publication-title: IEEE Access
– reference: Huang Jiawei, Lach John, Robins Gabriel. A methodology for energy-quality tradeoff using imprecise hardware. In: Proceedings of the 49th annual design automation conference. 2012, p. 504–9.
– volume: 68
  start-page: 2535
  year: 2021
  end-page: 2545
  ident: b3
  article-title: A two-stage operand trimming approximate logarithmic multiplier
  publication-title: IEEE Trans Circuits Syst I Regul Pap
– start-page: 1366
  year: 2020
  end-page: 1371
  ident: b22
  article-title: Realm: reduced-error approximate log-based integer multiplier
  publication-title: 2020 design, automation & test in europe conference & exhibition
– volume: 108
  start-page: 2108
  year: 2020
  end-page: 2135
  ident: b29
  article-title: Approximate arithmetic circuits: A survey, characterization, and recent applications
  publication-title: Proc IEEE
– reference: Oelund James, Kim Sunwoong. ILAFD: Accuracy-Configurable Floating-Point Divider Using an Approximate Reciprocal and an Iterative Logarithmic Multiplier. In: Proceedings of the great lakes symposium on VLSI 2023. 2023, p. 639–44.
– start-page: 605
  year: 2020
  end-page: 610
  ident: b28
  article-title: LeAp: Leading-one detection-based softcore approximate multipliers with tunable accuracy
  publication-title: 2020 25th Asia and south Pacific design automation conference
– volume: 66
  start-page: 189
  year: 2018
  end-page: 202
  ident: b24
  article-title: Low-power approximate unsigned multipliers with configurable error recovery
  publication-title: IEEE Trans Circuits Syst I Regul Pap
– reference: Chippa Vinay K, Mohapatra Debabrata, Raghunathan Anand, Roy Kaushik, Chakradhar Srimat T. Scalable effort hardware design: Exploiting algorithmic resilience for energy efficiency. In: Proceedings of the 47th design automation conference. 2010, p. 555–60.
– volume: 70
  start-page: 614
  year: 2020
  end-page: 625
  ident: b20
  article-title: An improved logarithmic multiplier for energy-efficient neural computing
  publication-title: IEEE Trans Comput
– volume: 68
  start-page: 660
  issue: 5
  year: 2018
  ident: 10.1016/j.compeleceng.2025.110215_b30
  article-title: Efficient Mitchell’s approximate log multipliers for convolutional neural networks
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2018.2880742
– volume: 70
  start-page: 614
  issue: 4
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110215_b20
  article-title: An improved logarithmic multiplier for energy-efficient neural computing
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2020.2992113
– volume: 66
  start-page: 189
  issue: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2025.110215_b24
  article-title: Low-power approximate unsigned multipliers with configurable error recovery
  publication-title: IEEE Trans Circuits Syst I Regul Pap
  doi: 10.1109/TCSI.2018.2856245
– volume: 65
  start-page: 2856
  issue: 9
  year: 2018
  ident: 10.1016/j.compeleceng.2025.110215_b19
  article-title: Design and evaluation of approximate logarithmic multipliers for low power error-tolerant applications
  publication-title: IEEE Trans Circuits Syst I Regul Pap
  doi: 10.1109/TCSI.2018.2792902
– volume: 193
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110215_b5
  article-title: A survey on wearable technology: History, state-of-the-art and current challenges
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2021.108074
– volume: 68
  start-page: 2535
  issue: 6
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110215_b3
  article-title: A two-stage operand trimming approximate logarithmic multiplier
  publication-title: IEEE Trans Circuits Syst I Regul Pap
  doi: 10.1109/TCSI.2021.3069168
– volume: 13
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.compeleceng.2025.110215_b12
  article-title: A review, classification, and comparative evaluation of approximate arithmetic circuits
  publication-title: ACM J Emerg Technol Comput Syst (JETC)
  doi: 10.1145/3094124
– volume: 37
  start-page: 2623
  issue: 11
  year: 2018
  ident: 10.1016/j.compeleceng.2025.110215_b21
  article-title: Minimally biased multipliers for approximate integer and floating-point multiplication
  publication-title: IEEE Trans Comput-Aided Des Integr Circuits Syst
  doi: 10.1109/TCAD.2018.2857262
– start-page: 605
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110215_b28
  article-title: LeAp: Leading-one detection-based softcore approximate multipliers with tunable accuracy
– volume: 4
  start-page: 506
  issue: 5
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110215_b8
  article-title: Designing of energy-efficient approximate multiplier circuit for processing unit of IoT devices
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-023-01864-4
– volume: 23
  start-page: 1180
  issue: 6
  year: 2014
  ident: 10.1016/j.compeleceng.2025.110215_b26
  article-title: Energy-efficient approximate multiplication for digital signal processing and classification applications
  publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst
  doi: 10.1109/TVLSI.2014.2333366
– volume: 136
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110215_b10
  article-title: Design and analysis of leading one/zero detector based approximate multipliers
  publication-title: Microelectron J
  doi: 10.1016/j.mejo.2023.105783
– volume: 6
  start-page: 612
  issue: 4
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110215_b7
  article-title: Design and analysis of energy-efficient dynamic range approximate logarithmic multipliers for machine learning
  publication-title: IEEE Trans Sustain Comput
  doi: 10.1109/TSUSC.2020.3004980
– start-page: 37
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110215_b23
  article-title: HEALM: Hardware-efficient approximate logarithmic multiplier with reduced error
– start-page: 512
  issue: 4
  year: 1962
  ident: 10.1016/j.compeleceng.2025.110215_b18
  article-title: Computer multiplication and division using binary logarithms
  publication-title: IRE Trans Electron Comput
  doi: 10.1109/TEC.1962.5219391
– volume: 108
  start-page: 2232
  issue: 12
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110215_b9
  article-title: Efficient AI system design with cross-layer approximate computing
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2020.3029453
– start-page: 1366
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110215_b22
  article-title: Realm: reduced-error approximate log-based integer multiplier
– volume: 70
  start-page: 776
  issue: 2
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110215_b11
  article-title: An ultra-efficient approximate multiplier with error compensation for error-resilient applications
  publication-title: IEEE Trans Circuits Syst II: Express Briefs
– start-page: 1
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110215_b16
  article-title: Approxfpgas: Embracing asic-based approximate arithmetic components for fpga-based systems
– volume: 8
  start-page: 25481
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110215_b15
  article-title: FPGA-based multi-level approximate multipliers for high-performance error-resilient applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2970968
– volume: 25
  start-page: 1782
  issue: 5
  year: 2017
  ident: 10.1016/j.compeleceng.2025.110215_b25
  article-title: Design of power and area efficient approximate multipliers
  publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst
  doi: 10.1109/TVLSI.2016.2643639
– ident: 10.1016/j.compeleceng.2025.110215_b14
  doi: 10.1145/1837274.1837411
– volume: 35
  start-page: 23
  issue: 1
  year: 2011
  ident: 10.1016/j.compeleceng.2025.110215_b13
  article-title: An iterative logarithmic multiplier
  publication-title: Microprocess Microsyst
  doi: 10.1016/j.micpro.2010.07.001
– ident: 10.1016/j.compeleceng.2025.110215_b6
  doi: 10.1145/2228360.2228450
– volume: 42
  start-page: 712
  issue: 3
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110215_b17
  article-title: RAPID: Approximate pipelined soft multipliers and dividers for high throughput and energy efficiency
  publication-title: IEEE Trans Comput-Aided Des Integr Circuits Syst
  doi: 10.1109/TCAD.2022.3184928
– volume: 108
  start-page: 2108
  issue: 12
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110215_b29
  article-title: Approximate arithmetic circuits: A survey, characterization, and recent applications
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2020.3006451
– volume: 9
  start-page: 1609
  issue: 3
  year: 2019
  ident: 10.1016/j.compeleceng.2025.110215_b2
  article-title: Design and analysis of majority logic-based approximate adders and multipliers
  publication-title: IEEE Trans Emerg Top Comput
  doi: 10.1109/TETC.2019.2929100
– start-page: 346
  year: 2011
  ident: 10.1016/j.compeleceng.2025.110215_b27
  article-title: Trading accuracy for power with an underdesigned multiplier architecture
– start-page: 1
  year: 2013
  ident: 10.1016/j.compeleceng.2025.110215_b1
  article-title: Approximate computing: An emerging paradigm for energy-efficient design
– ident: 10.1016/j.compeleceng.2025.110215_b4
  doi: 10.1145/3583781.3590262
SSID ssj0004618
Score 2.3780413
Snippet The numerical computations related to certain applications can usually withstand a small amount of error. So in these types of applications, such as data...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110215
SubjectTerms Approximate computing
Approximate multiplier
Area
Delay
Energy-consumption
Mitchell’s multiplication algorithm
Title LHTAM: Low-power and high-speed approximate multiplier for tiny inexact computing systems
URI https://dx.doi.org/10.1016/j.compeleceng.2025.110215
Volume 123
WOSCitedRecordID wos001440359400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0045-7906
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004618
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbpppTkUNIXTfpAhV4VbMuyrdLLUlLSsAk9bMP2ZGRJJg7EMfEmWfLrO3r4kZKStpCLMQLJ8szn0Uie-Qahj5wzISIdE1XKgMQFT0gRKEFixWiiS8a0zfA-nqVHR9liwb_7H-2tLSeQ1nW2WvHmQVUNbaBskzr7D-ruB4UGuAelwxXUDte_Uvxsfz49NBv92fk1aUwRNPuDwPASk7aBxcrxiK8q8FV1F1Bock5swGFVm0RAvTKpk9JWfLAHDiNe847WwJeDaC14XDUdq3A9MBz2uLsRykYNTG-qHowH4qw9qVz7sTjxkfX-ACJio7gVb1Rjw3oZJLeMakRHZjE0BcTZnRbbHR6cGoE3Zq4wyV3zlN2hz22W7N9Wrz6msAtXO81HQ-VmqNwN9QitRynj2QStT7_tLQ5G6bOhW7D9ezxBH4YwwD_M6243ZuSazLfQU7-nwFOHhWdoTdfP0eaIafIF-mlR8Qn3mMCACTxgAo8wgQdMYMAENpjAHhO4xwT2mHiJfnzdm3_ZJ76qBpEhZ0uSKJnEugxYVPJAiySlRcCl-SxZSEsuqIrCQlJRyDQpeabKMNFUcfBE4WsvqKSv0KQ-r_VrhLUKI8P3X0hT1CALOAimBLMuM80VDfQ2ijoh5Y0jT8nvVdM2-tyJM_deoPPucoDM_d13_ueZb9DGgOy3aLK8uNTv0GN5tazai_ceL78A7RCHCw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LHTAM%3A+Low-power+and+high-speed+approximate+multiplier+for+tiny+inexact+computing+systems&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Izadi%2C+Azin&rft.au=Jamshidi%2C+Vahid&rft.date=2025-04-01&rft.issn=0045-7906&rft.volume=123&rft.spage=110215&rft_id=info:doi/10.1016%2Fj.compeleceng.2025.110215&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2025_110215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon