LHTAM: Low-power and high-speed approximate multiplier for tiny inexact computing systems
The numerical computations related to certain applications can usually withstand a small amount of error. So in these types of applications, such as data mining, encoding algorithms, image processing, machine learning, signal processing, and other error-resilient applications, accurate computing can...
Saved in:
| Published in: | Computers & electrical engineering Vol. 123; p. 110215 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.04.2025
|
| Subjects: | |
| ISSN: | 0045-7906 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The numerical computations related to certain applications can usually withstand a small amount of error. So in these types of applications, such as data mining, encoding algorithms, image processing, machine learning, signal processing, and other error-resilient applications, accurate computing can be replaced with approximate computing in order to reduce circuit delay and power consumption. In these applications, a certain degree of error is acceptable. Multiplication is a fundamental arithmetic operation in computer systems. However, performing it accurately using multipliers — key components in these systems — can result in increased circuit delay, higher power consumption, and greater use of area. Therefore, presenting an optimal multiplier would be considered as a significant advantage for inexact computing systems. In this paper, we propose a new Mitchell algorithm-based approximate multiplier that applied error-reduction factors can be used. The proposed design has been implemented in the Cadence software environment by using TSMC 45 nm standard-cell library and a supplied voltage of 1.1v. The simulation results indicate an average reduction of 31.7% in area, 64.7% in energy, and 36.1% in circuit delay relative to those achieved in previous works. The mean relative error distance (MRED) of the proposed method is 2.6%. |
|---|---|
| AbstractList | The numerical computations related to certain applications can usually withstand a small amount of error. So in these types of applications, such as data mining, encoding algorithms, image processing, machine learning, signal processing, and other error-resilient applications, accurate computing can be replaced with approximate computing in order to reduce circuit delay and power consumption. In these applications, a certain degree of error is acceptable. Multiplication is a fundamental arithmetic operation in computer systems. However, performing it accurately using multipliers — key components in these systems — can result in increased circuit delay, higher power consumption, and greater use of area. Therefore, presenting an optimal multiplier would be considered as a significant advantage for inexact computing systems. In this paper, we propose a new Mitchell algorithm-based approximate multiplier that applied error-reduction factors can be used. The proposed design has been implemented in the Cadence software environment by using TSMC 45 nm standard-cell library and a supplied voltage of 1.1v. The simulation results indicate an average reduction of 31.7% in area, 64.7% in energy, and 36.1% in circuit delay relative to those achieved in previous works. The mean relative error distance (MRED) of the proposed method is 2.6%. |
| ArticleNumber | 110215 |
| Author | Jamshidi, Vahid Izadi, Azin |
| Author_xml | – sequence: 1 givenname: Azin surname: Izadi fullname: Izadi, Azin email: azinizadi@eng.uk.ac.ir – sequence: 2 givenname: Vahid orcidid: 0000-0002-4249-7890 surname: Jamshidi fullname: Jamshidi, Vahid email: vjamshidi@uk.ac.ir |
| BookMark | eNqNkLFOwzAQhj0UibbwDuYBEuykdmq2qgKKFMRSBibLsc-tqySO7JS2b0-qMDAyne50_3__fTM0aX0LCD1QklJC-eMh1b7poAYN7S7NSMZSSklG2QRNCVmwpBCE36JZjAcy9Jwup-ir3GxX70-49Kek8ycIWLUG791un8QOwGDVdcGfXaN6wM2x7l1Xu2HL-oB7116wa-GsdI-vp4_DZIfjJfbQxDt0Y1Ud4f63ztHny_N2vUnKj9e39apMNBWsT7jRfAGWsMwKAooXeUWEBssYo7kVKjcZrXSuKl1wK5bGUg65EQUloHWV63yOxOirg48xgJVdGOKGi6REXrnIg_zDRV65yJHLoF2PWhgCfg9_yagdtBqMC6B7abz7h8sPfsV3-Q |
| Cites_doi | 10.1109/TC.2018.2880742 10.1109/TC.2020.2992113 10.1109/TCSI.2018.2856245 10.1109/TCSI.2018.2792902 10.1016/j.comnet.2021.108074 10.1109/TCSI.2021.3069168 10.1145/3094124 10.1109/TCAD.2018.2857262 10.1007/s42979-023-01864-4 10.1109/TVLSI.2014.2333366 10.1016/j.mejo.2023.105783 10.1109/TSUSC.2020.3004980 10.1109/TEC.1962.5219391 10.1109/JPROC.2020.3029453 10.1109/ACCESS.2020.2970968 10.1109/TVLSI.2016.2643639 10.1145/1837274.1837411 10.1016/j.micpro.2010.07.001 10.1145/2228360.2228450 10.1109/TCAD.2022.3184928 10.1109/JPROC.2020.3006451 10.1109/TETC.2019.2929100 10.1145/3583781.3590262 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compeleceng.2025.110215 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_compeleceng_2025_110215 S0045790625001582 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c195t-6dc64ef052f90ea673b09cef55513f9a3d21bc3abc76f98df16e3d9710eccb3c3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001440359400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7906 |
| IngestDate | Sat Nov 29 08:00:07 EST 2025 Sat Apr 26 15:41:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Energy-consumption Area Mitchell’s multiplication algorithm Approximate computing Delay Approximate multiplier |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c195t-6dc64ef052f90ea673b09cef55513f9a3d21bc3abc76f98df16e3d9710eccb3c3 |
| ORCID | 0000-0002-4249-7890 |
| ParticipantIDs | crossref_primary_10_1016_j_compeleceng_2025_110215 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2025_110215 |
| PublicationCentury | 2000 |
| PublicationDate | April 2025 2025-04-00 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & electrical engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Prabakaran, Mrazek, Vasicek, Sekanina, Shafique (b16) 2020 Oelund James, Kim Sunwoong. ILAFD: Accuracy-Configurable Floating-Point Divider Using an Approximate Reciprocal and an Iterative Logarithmic Multiplier. In: Proceedings of the great lakes symposium on VLSI 2023. 2023, p. 639–44. Jiang, Liu, Liu, Lombardi, Han (b12) 2017; 13 Pilipović, Bulić, Lotrič (b3) 2021; 68 Choudhary, Bhargava, Suhag (b8) 2023; 4 Mitchell (b18) 1962 Liu, Zhang, McLarnon, O’Neill, Montuschi, Lombardi (b2) 2019; 9 Ansari, Cockburn, Han (b20) 2020; 70 Du, Chen, Cheng, Shan (b10) 2023; 136 Yu, Tasnim, Tan (b23) 2022 Kulkarni, Gupta, Ercegovac (b27) 2011 Jiang, Liu, Lombardi, Han (b24) 2018; 66 Saadat, Bokhari, Parameswaran (b21) 2018; 37 Narayanamoorthy, Moghaddam, Liu, Park, Kim (b26) 2014; 23 Chippa Vinay K, Mohapatra Debabrata, Raghunathan Anand, Roy Kaushik, Chakradhar Srimat T. Scalable effort hardware design: Exploiting algorithmic resilience for energy efficiency. In: Proceedings of the 47th design automation conference. 2010, p. 555–60. Kim, Del Barrio, Oliveira, Hermida, Bagherzadeh (b30) 2018; 68 Ebrahimi, Ullah, Kumar (b28) 2020 Yin, Wang, Waris, Liu, Han, Lombardi (b7) 2020; 6 Sabetzadeh, Moaiyeri, Ahmadinejad (b11) 2022; 70 Saadat, Javaid, Ignjatovic, Parameswaran (b22) 2020 Han, Orshansky (b1) 2013 Babić, Avramović, Bulić (b13) 2011; 35 Van Toan, Lee (b15) 2020; 8 Liu, Xu, Wang, Wang, Montuschi, Lombardi (b19) 2018; 65 Huang Jiawei, Lach John, Robins Gabriel. A methodology for energy-quality tradeoff using imprecise hardware. In: Proceedings of the 49th annual design automation conference. 2012, p. 504–9. Jiang, Santiago, Mo, Liu, Han (b29) 2020; 108 Ometov, Shubina, Klus, Skibińska, Saafi, Pascacio (b5) 2021; 193 Ebrahimi, Zaid, Wijtvliet, Kumar (b17) 2022; 42 Venkataramani, Sun, Wang, Chen, Choi, Kang (b9) 2020; 108 Venkatachalam, Ko (b25) 2017; 25 Prabakaran (10.1016/j.compeleceng.2025.110215_b16) 2020 Kulkarni (10.1016/j.compeleceng.2025.110215_b27) 2011 Saadat (10.1016/j.compeleceng.2025.110215_b22) 2020 Yu (10.1016/j.compeleceng.2025.110215_b23) 2022 Narayanamoorthy (10.1016/j.compeleceng.2025.110215_b26) 2014; 23 Ansari (10.1016/j.compeleceng.2025.110215_b20) 2020; 70 Ebrahimi (10.1016/j.compeleceng.2025.110215_b28) 2020 Van Toan (10.1016/j.compeleceng.2025.110215_b15) 2020; 8 Venkatachalam (10.1016/j.compeleceng.2025.110215_b25) 2017; 25 10.1016/j.compeleceng.2025.110215_b14 Jiang (10.1016/j.compeleceng.2025.110215_b12) 2017; 13 Kim (10.1016/j.compeleceng.2025.110215_b30) 2018; 68 Liu (10.1016/j.compeleceng.2025.110215_b2) 2019; 9 Venkataramani (10.1016/j.compeleceng.2025.110215_b9) 2020; 108 Mitchell (10.1016/j.compeleceng.2025.110215_b18) 1962 Jiang (10.1016/j.compeleceng.2025.110215_b24) 2018; 66 Han (10.1016/j.compeleceng.2025.110215_b1) 2013 Du (10.1016/j.compeleceng.2025.110215_b10) 2023; 136 Jiang (10.1016/j.compeleceng.2025.110215_b29) 2020; 108 Yin (10.1016/j.compeleceng.2025.110215_b7) 2020; 6 Pilipović (10.1016/j.compeleceng.2025.110215_b3) 2021; 68 Choudhary (10.1016/j.compeleceng.2025.110215_b8) 2023; 4 10.1016/j.compeleceng.2025.110215_b4 Saadat (10.1016/j.compeleceng.2025.110215_b21) 2018; 37 Sabetzadeh (10.1016/j.compeleceng.2025.110215_b11) 2022; 70 10.1016/j.compeleceng.2025.110215_b6 Liu (10.1016/j.compeleceng.2025.110215_b19) 2018; 65 Ebrahimi (10.1016/j.compeleceng.2025.110215_b17) 2022; 42 Babić (10.1016/j.compeleceng.2025.110215_b13) 2011; 35 Ometov (10.1016/j.compeleceng.2025.110215_b5) 2021; 193 |
| References_xml | – volume: 23 start-page: 1180 year: 2014 end-page: 1184 ident: b26 article-title: Energy-efficient approximate multiplication for digital signal processing and classification applications publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst – start-page: 1 year: 2013 end-page: 6 ident: b1 article-title: Approximate computing: An emerging paradigm for energy-efficient design publication-title: 2013 18th IEEE European test symposium – volume: 13 start-page: 1 year: 2017 end-page: 34 ident: b12 article-title: A review, classification, and comparative evaluation of approximate arithmetic circuits publication-title: ACM J Emerg Technol Comput Syst (JETC) – volume: 65 start-page: 2856 year: 2018 end-page: 2868 ident: b19 article-title: Design and evaluation of approximate logarithmic multipliers for low power error-tolerant applications publication-title: IEEE Trans Circuits Syst I Regul Pap – start-page: 37 year: 2022 end-page: 42 ident: b23 article-title: HEALM: Hardware-efficient approximate logarithmic multiplier with reduced error publication-title: 2022 27th Asia and south Pacific design automation conference – volume: 136 year: 2023 ident: b10 article-title: Design and analysis of leading one/zero detector based approximate multipliers publication-title: Microelectron J – start-page: 346 year: 2011 end-page: 351 ident: b27 article-title: Trading accuracy for power with an underdesigned multiplier architecture publication-title: 2011 24th internatioal conference on VLSI design – volume: 6 start-page: 612 year: 2020 end-page: 625 ident: b7 article-title: Design and analysis of energy-efficient dynamic range approximate logarithmic multipliers for machine learning publication-title: IEEE Trans Sustain Comput – volume: 108 start-page: 2232 year: 2020 end-page: 2250 ident: b9 article-title: Efficient AI system design with cross-layer approximate computing publication-title: Proc IEEE – volume: 193 year: 2021 ident: b5 article-title: A survey on wearable technology: History, state-of-the-art and current challenges publication-title: Comput Netw – start-page: 512 year: 1962 end-page: 517 ident: b18 article-title: Computer multiplication and division using binary logarithms publication-title: IRE Trans Electron Comput – volume: 70 start-page: 776 year: 2022 end-page: 780 ident: b11 article-title: An ultra-efficient approximate multiplier with error compensation for error-resilient applications publication-title: IEEE Trans Circuits Syst II: Express Briefs – volume: 35 start-page: 23 year: 2011 end-page: 33 ident: b13 article-title: An iterative logarithmic multiplier publication-title: Microprocess Microsyst – volume: 25 start-page: 1782 year: 2017 end-page: 1786 ident: b25 article-title: Design of power and area efficient approximate multipliers publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst – volume: 68 start-page: 660 year: 2018 end-page: 675 ident: b30 article-title: Efficient Mitchell’s approximate log multipliers for convolutional neural networks publication-title: IEEE Trans Comput – volume: 37 start-page: 2623 year: 2018 end-page: 2635 ident: b21 article-title: Minimally biased multipliers for approximate integer and floating-point multiplication publication-title: IEEE Trans Comput-Aided Des Integr Circuits Syst – volume: 42 start-page: 712 year: 2022 end-page: 725 ident: b17 article-title: RAPID: Approximate pipelined soft multipliers and dividers for high throughput and energy efficiency publication-title: IEEE Trans Comput-Aided Des Integr Circuits Syst – start-page: 1 year: 2020 end-page: 6 ident: b16 article-title: Approxfpgas: Embracing asic-based approximate arithmetic components for fpga-based systems publication-title: 2020 57th ACM/IEEE design automation conference – volume: 9 start-page: 1609 year: 2019 end-page: 1624 ident: b2 article-title: Design and analysis of majority logic-based approximate adders and multipliers publication-title: IEEE Trans Emerg Top Comput – volume: 4 start-page: 506 year: 2023 ident: b8 article-title: Designing of energy-efficient approximate multiplier circuit for processing unit of IoT devices publication-title: SN Comput Sci – volume: 8 start-page: 25481 year: 2020 end-page: 25497 ident: b15 article-title: FPGA-based multi-level approximate multipliers for high-performance error-resilient applications publication-title: IEEE Access – reference: Huang Jiawei, Lach John, Robins Gabriel. A methodology for energy-quality tradeoff using imprecise hardware. In: Proceedings of the 49th annual design automation conference. 2012, p. 504–9. – volume: 68 start-page: 2535 year: 2021 end-page: 2545 ident: b3 article-title: A two-stage operand trimming approximate logarithmic multiplier publication-title: IEEE Trans Circuits Syst I Regul Pap – start-page: 1366 year: 2020 end-page: 1371 ident: b22 article-title: Realm: reduced-error approximate log-based integer multiplier publication-title: 2020 design, automation & test in europe conference & exhibition – volume: 108 start-page: 2108 year: 2020 end-page: 2135 ident: b29 article-title: Approximate arithmetic circuits: A survey, characterization, and recent applications publication-title: Proc IEEE – reference: Oelund James, Kim Sunwoong. ILAFD: Accuracy-Configurable Floating-Point Divider Using an Approximate Reciprocal and an Iterative Logarithmic Multiplier. In: Proceedings of the great lakes symposium on VLSI 2023. 2023, p. 639–44. – start-page: 605 year: 2020 end-page: 610 ident: b28 article-title: LeAp: Leading-one detection-based softcore approximate multipliers with tunable accuracy publication-title: 2020 25th Asia and south Pacific design automation conference – volume: 66 start-page: 189 year: 2018 end-page: 202 ident: b24 article-title: Low-power approximate unsigned multipliers with configurable error recovery publication-title: IEEE Trans Circuits Syst I Regul Pap – reference: Chippa Vinay K, Mohapatra Debabrata, Raghunathan Anand, Roy Kaushik, Chakradhar Srimat T. Scalable effort hardware design: Exploiting algorithmic resilience for energy efficiency. In: Proceedings of the 47th design automation conference. 2010, p. 555–60. – volume: 70 start-page: 614 year: 2020 end-page: 625 ident: b20 article-title: An improved logarithmic multiplier for energy-efficient neural computing publication-title: IEEE Trans Comput – volume: 68 start-page: 660 issue: 5 year: 2018 ident: 10.1016/j.compeleceng.2025.110215_b30 article-title: Efficient Mitchell’s approximate log multipliers for convolutional neural networks publication-title: IEEE Trans Comput doi: 10.1109/TC.2018.2880742 – volume: 70 start-page: 614 issue: 4 year: 2020 ident: 10.1016/j.compeleceng.2025.110215_b20 article-title: An improved logarithmic multiplier for energy-efficient neural computing publication-title: IEEE Trans Comput doi: 10.1109/TC.2020.2992113 – volume: 66 start-page: 189 issue: 1 year: 2018 ident: 10.1016/j.compeleceng.2025.110215_b24 article-title: Low-power approximate unsigned multipliers with configurable error recovery publication-title: IEEE Trans Circuits Syst I Regul Pap doi: 10.1109/TCSI.2018.2856245 – volume: 65 start-page: 2856 issue: 9 year: 2018 ident: 10.1016/j.compeleceng.2025.110215_b19 article-title: Design and evaluation of approximate logarithmic multipliers for low power error-tolerant applications publication-title: IEEE Trans Circuits Syst I Regul Pap doi: 10.1109/TCSI.2018.2792902 – volume: 193 year: 2021 ident: 10.1016/j.compeleceng.2025.110215_b5 article-title: A survey on wearable technology: History, state-of-the-art and current challenges publication-title: Comput Netw doi: 10.1016/j.comnet.2021.108074 – volume: 68 start-page: 2535 issue: 6 year: 2021 ident: 10.1016/j.compeleceng.2025.110215_b3 article-title: A two-stage operand trimming approximate logarithmic multiplier publication-title: IEEE Trans Circuits Syst I Regul Pap doi: 10.1109/TCSI.2021.3069168 – volume: 13 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.compeleceng.2025.110215_b12 article-title: A review, classification, and comparative evaluation of approximate arithmetic circuits publication-title: ACM J Emerg Technol Comput Syst (JETC) doi: 10.1145/3094124 – volume: 37 start-page: 2623 issue: 11 year: 2018 ident: 10.1016/j.compeleceng.2025.110215_b21 article-title: Minimally biased multipliers for approximate integer and floating-point multiplication publication-title: IEEE Trans Comput-Aided Des Integr Circuits Syst doi: 10.1109/TCAD.2018.2857262 – start-page: 605 year: 2020 ident: 10.1016/j.compeleceng.2025.110215_b28 article-title: LeAp: Leading-one detection-based softcore approximate multipliers with tunable accuracy – volume: 4 start-page: 506 issue: 5 year: 2023 ident: 10.1016/j.compeleceng.2025.110215_b8 article-title: Designing of energy-efficient approximate multiplier circuit for processing unit of IoT devices publication-title: SN Comput Sci doi: 10.1007/s42979-023-01864-4 – volume: 23 start-page: 1180 issue: 6 year: 2014 ident: 10.1016/j.compeleceng.2025.110215_b26 article-title: Energy-efficient approximate multiplication for digital signal processing and classification applications publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst doi: 10.1109/TVLSI.2014.2333366 – volume: 136 year: 2023 ident: 10.1016/j.compeleceng.2025.110215_b10 article-title: Design and analysis of leading one/zero detector based approximate multipliers publication-title: Microelectron J doi: 10.1016/j.mejo.2023.105783 – volume: 6 start-page: 612 issue: 4 year: 2020 ident: 10.1016/j.compeleceng.2025.110215_b7 article-title: Design and analysis of energy-efficient dynamic range approximate logarithmic multipliers for machine learning publication-title: IEEE Trans Sustain Comput doi: 10.1109/TSUSC.2020.3004980 – start-page: 37 year: 2022 ident: 10.1016/j.compeleceng.2025.110215_b23 article-title: HEALM: Hardware-efficient approximate logarithmic multiplier with reduced error – start-page: 512 issue: 4 year: 1962 ident: 10.1016/j.compeleceng.2025.110215_b18 article-title: Computer multiplication and division using binary logarithms publication-title: IRE Trans Electron Comput doi: 10.1109/TEC.1962.5219391 – volume: 108 start-page: 2232 issue: 12 year: 2020 ident: 10.1016/j.compeleceng.2025.110215_b9 article-title: Efficient AI system design with cross-layer approximate computing publication-title: Proc IEEE doi: 10.1109/JPROC.2020.3029453 – start-page: 1366 year: 2020 ident: 10.1016/j.compeleceng.2025.110215_b22 article-title: Realm: reduced-error approximate log-based integer multiplier – volume: 70 start-page: 776 issue: 2 year: 2022 ident: 10.1016/j.compeleceng.2025.110215_b11 article-title: An ultra-efficient approximate multiplier with error compensation for error-resilient applications publication-title: IEEE Trans Circuits Syst II: Express Briefs – start-page: 1 year: 2020 ident: 10.1016/j.compeleceng.2025.110215_b16 article-title: Approxfpgas: Embracing asic-based approximate arithmetic components for fpga-based systems – volume: 8 start-page: 25481 year: 2020 ident: 10.1016/j.compeleceng.2025.110215_b15 article-title: FPGA-based multi-level approximate multipliers for high-performance error-resilient applications publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2970968 – volume: 25 start-page: 1782 issue: 5 year: 2017 ident: 10.1016/j.compeleceng.2025.110215_b25 article-title: Design of power and area efficient approximate multipliers publication-title: IEEE Trans Very Large Scale Integr (VLSI) Syst doi: 10.1109/TVLSI.2016.2643639 – ident: 10.1016/j.compeleceng.2025.110215_b14 doi: 10.1145/1837274.1837411 – volume: 35 start-page: 23 issue: 1 year: 2011 ident: 10.1016/j.compeleceng.2025.110215_b13 article-title: An iterative logarithmic multiplier publication-title: Microprocess Microsyst doi: 10.1016/j.micpro.2010.07.001 – ident: 10.1016/j.compeleceng.2025.110215_b6 doi: 10.1145/2228360.2228450 – volume: 42 start-page: 712 issue: 3 year: 2022 ident: 10.1016/j.compeleceng.2025.110215_b17 article-title: RAPID: Approximate pipelined soft multipliers and dividers for high throughput and energy efficiency publication-title: IEEE Trans Comput-Aided Des Integr Circuits Syst doi: 10.1109/TCAD.2022.3184928 – volume: 108 start-page: 2108 issue: 12 year: 2020 ident: 10.1016/j.compeleceng.2025.110215_b29 article-title: Approximate arithmetic circuits: A survey, characterization, and recent applications publication-title: Proc IEEE doi: 10.1109/JPROC.2020.3006451 – volume: 9 start-page: 1609 issue: 3 year: 2019 ident: 10.1016/j.compeleceng.2025.110215_b2 article-title: Design and analysis of majority logic-based approximate adders and multipliers publication-title: IEEE Trans Emerg Top Comput doi: 10.1109/TETC.2019.2929100 – start-page: 346 year: 2011 ident: 10.1016/j.compeleceng.2025.110215_b27 article-title: Trading accuracy for power with an underdesigned multiplier architecture – start-page: 1 year: 2013 ident: 10.1016/j.compeleceng.2025.110215_b1 article-title: Approximate computing: An emerging paradigm for energy-efficient design – ident: 10.1016/j.compeleceng.2025.110215_b4 doi: 10.1145/3583781.3590262 |
| SSID | ssj0004618 |
| Score | 2.3780413 |
| Snippet | The numerical computations related to certain applications can usually withstand a small amount of error. So in these types of applications, such as data... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 110215 |
| SubjectTerms | Approximate computing Approximate multiplier Area Delay Energy-consumption Mitchell’s multiplication algorithm |
| Title | LHTAM: Low-power and high-speed approximate multiplier for tiny inexact computing systems |
| URI | https://dx.doi.org/10.1016/j.compeleceng.2025.110215 |
| Volume | 123 |
| WOSCitedRecordID | wos001440359400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0045-7906 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004618 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbpppTkUNIXTfpAhV4VbMuyrdLLUlLSsAk9bMP2ZGRJJg7EMfEmWfLrO3r4kZKStpCLMQLJ8szn0Uie-Qahj5wzISIdE1XKgMQFT0gRKEFixWiiS8a0zfA-nqVHR9liwb_7H-2tLSeQ1nW2WvHmQVUNbaBskzr7D-ruB4UGuAelwxXUDte_Uvxsfz49NBv92fk1aUwRNPuDwPASk7aBxcrxiK8q8FV1F1Bock5swGFVm0RAvTKpk9JWfLAHDiNe847WwJeDaC14XDUdq3A9MBz2uLsRykYNTG-qHowH4qw9qVz7sTjxkfX-ACJio7gVb1Rjw3oZJLeMakRHZjE0BcTZnRbbHR6cGoE3Zq4wyV3zlN2hz22W7N9Wrz6msAtXO81HQ-VmqNwN9QitRynj2QStT7_tLQ5G6bOhW7D9ezxBH4YwwD_M6243ZuSazLfQU7-nwFOHhWdoTdfP0eaIafIF-mlR8Qn3mMCACTxgAo8wgQdMYMAENpjAHhO4xwT2mHiJfnzdm3_ZJ76qBpEhZ0uSKJnEugxYVPJAiySlRcCl-SxZSEsuqIrCQlJRyDQpeabKMNFUcfBE4WsvqKSv0KQ-r_VrhLUKI8P3X0hT1CALOAimBLMuM80VDfQ2ijoh5Y0jT8nvVdM2-tyJM_deoPPucoDM_d13_ueZb9DGgOy3aLK8uNTv0GN5tazai_ceL78A7RCHCw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LHTAM%3A+Low-power+and+high-speed+approximate+multiplier+for+tiny+inexact+computing+systems&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Izadi%2C+Azin&rft.au=Jamshidi%2C+Vahid&rft.date=2025-04-01&rft.issn=0045-7906&rft.volume=123&rft.spage=110215&rft_id=info:doi/10.1016%2Fj.compeleceng.2025.110215&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2025_110215 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |