Distributed Consensus Observers-Based H Control of Dissipative PDE Systems Using Sensor Networks

This paper considers the problem of finite dimensional output feedback H ∞ control for a class of nonlinear spatially distributed processes described by highly dissipative partial differential equations (PDEs), whose state is observed by a sensor network (SN) with a given topology. This class of sys...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on control of network systems Ročník 2; číslo 2; s. 112 - 121
Hlavní autori: Wu, Huai-Ning, Wang, Hong-Du
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2015
Predmet:
ISSN:2325-5870, 2372-2533
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper considers the problem of finite dimensional output feedback H ∞ control for a class of nonlinear spatially distributed processes described by highly dissipative partial differential equations (PDEs), whose state is observed by a sensor network (SN) with a given topology. This class of systems typically involves a spatial differential operator whose eigenspectrum can be partitioned into a finite-dimensional slow one and an infinite-dimensional stable fast complement. Motivated by this fact, the modal decomposition and singular perturbation techniques are initially applied to the PDE system to derive a finite-dimensional ordinary differential equation model, which accurately captures the dominant dynamics of the PDE system. Subsequently, based on the slow system and the SN topology, a set of finite-dimensional distributed consensus observers is constructed to estimate the state of the slow system. Then, a centralized control scheme, which only uses the available estimates from a specified group of SN nodes, is proposed for the PDE system. An H ∞ control design is developed in terms of a bilinear matrix inequality (BMI), such that the closed-loop PDE system is exponentially stable and a prescribed level of disturbance attenuation is satisfied for the slow system. Furthermore, a suboptimal H ∞ controller is also provided to make the attenuation level as small as possible, which can be obtained via a local optimization algorithm that treats the BMI as a double linear matrix inequality. Finally, the proposed method is applied to the control of the 1-D Kuramoto-Sivashinsky equation system.
AbstractList This paper considers the problem of finite dimensional output feedback H ∞ control for a class of nonlinear spatially distributed processes described by highly dissipative partial differential equations (PDEs), whose state is observed by a sensor network (SN) with a given topology. This class of systems typically involves a spatial differential operator whose eigenspectrum can be partitioned into a finite-dimensional slow one and an infinite-dimensional stable fast complement. Motivated by this fact, the modal decomposition and singular perturbation techniques are initially applied to the PDE system to derive a finite-dimensional ordinary differential equation model, which accurately captures the dominant dynamics of the PDE system. Subsequently, based on the slow system and the SN topology, a set of finite-dimensional distributed consensus observers is constructed to estimate the state of the slow system. Then, a centralized control scheme, which only uses the available estimates from a specified group of SN nodes, is proposed for the PDE system. An H ∞ control design is developed in terms of a bilinear matrix inequality (BMI), such that the closed-loop PDE system is exponentially stable and a prescribed level of disturbance attenuation is satisfied for the slow system. Furthermore, a suboptimal H ∞ controller is also provided to make the attenuation level as small as possible, which can be obtained via a local optimization algorithm that treats the BMI as a double linear matrix inequality. Finally, the proposed method is applied to the control of the 1-D Kuramoto-Sivashinsky equation system.
Author Huai-Ning Wu
Hong-Du Wang
Author_xml – sequence: 1
  givenname: Huai-Ning
  surname: Wu
  fullname: Wu, Huai-Ning
– sequence: 2
  givenname: Hong-Du
  surname: Wang
  fullname: Wang, Hong-Du
BookMark eNp9kE9PwkAQxTcGExH5AMbLfoHi_mG77VGLigkBE-Bcd9tZswot2SkYvr1tIB48eJo3efm9ybxr0qvqCgi55WzEOUvvV9l8ORKMj0dC6iTR4wvSb5WIhJKy12mhIpVodkWGiJ-MMS5Uu8s-eZ94bIK3-wZKmtUVQoV7pAuLEA4QMHo02DrTzmtCvaG1oy2CfmcafwD6NnmiyyM2sEW6Rl990GWbUAc6h-a7Dl94Qy6d2SAMz3NA1s9Pq2wazRYvr9nDLCp4qppIlInmJUuMjB2UBTDLuRO6cIrZeMxVwco4ZUaUMSjLTMm10SmPrXVMW2cKOSD8lFuEGjGAy3fBb0045pzlXUt511LetZSfW2oZ_YcpfNP-1b1q_OZf8u5EegD4vRSnOhVcyh9ownig
CODEN ITCNAY
CitedBy_id crossref_primary_10_1109_TCNS_2022_3153870
crossref_primary_10_1016_j_jprocont_2016_08_010
crossref_primary_10_1007_s11277_024_11367_x
crossref_primary_10_1109_JSYST_2022_3142183
crossref_primary_10_1109_TSMC_2017_2660883
crossref_primary_10_1109_TCYB_2019_2942685
crossref_primary_10_1109_TCYB_2019_2948562
crossref_primary_10_1109_TCNS_2016_2578460
crossref_primary_10_1109_TNNLS_2017_2659386
crossref_primary_10_1109_JSYST_2023_3289635
crossref_primary_10_1109_TSMC_2017_2681702
crossref_primary_10_1109_TCNS_2019_2929657
crossref_primary_10_1109_TSG_2020_3047949
crossref_primary_10_1016_j_apenergy_2024_123997
crossref_primary_10_1016_j_isatra_2018_11_012
crossref_primary_10_1016_j_jfranklin_2017_07_033
crossref_primary_10_1371_journal_pone_0311215
crossref_primary_10_1002_asjc_2502
crossref_primary_10_1109_TCNS_2020_2966648
crossref_primary_10_1109_TCYB_2019_2903411
crossref_primary_10_3390_s20113244
crossref_primary_10_1016_j_jfranklin_2022_09_017
crossref_primary_10_1016_j_automatica_2023_111491
Cites_doi 10.1007/978-1-4612-4224-6
10.1007/978-1-4612-0185-4
10.1109/TAC.1982.1102875
10.1109/TSMCB.2012.2194781
10.1016/j.jprocont.2014.02.017
10.1109/TIE.2009.2015754
10.1109/MIC.2006.38
10.1109/TAC.2011.2176154
10.1016/j.sysconle.2009.10.001
10.1109/TFUZZ.2009.2020506
10.1109/JPROC.2003.814926
10.1016/0022-247X(88)90401-5
10.1109/CDC.2007.4434303
10.1109/TSMCB.2009.2021254
10.1137/S0363012994272630
10.1007/978-1-84882-656-4
10.1007/978-94-007-0741-2
10.1016/j.ces.2008.06.026
10.1016/j.automatica.2009.11.015
10.1109/ACC.1994.751863
10.1016/S0167-6911(99)00108-5
10.1016/j.automatica.2010.06.025
10.1006/jmaa.2000.6994
10.1109/TNN.2009.2028887
10.1109/TFUZZ.2007.896351
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCNS.2014.2378874
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2372-2533
EndPage 121
ExternalDocumentID 10_1109_TCNS_2014_2378874
6979213
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundations of China
  grantid: 61421063; 61473011
  funderid: 10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program)
  grantid: 2012CB720003
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c195t-2d871d08a36fedce0b11f27cf50b6415c0d690a2d6e5b0ad17a7916bbf07bfac3
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000365085700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2325-5870
IngestDate Tue Nov 18 21:27:19 EST 2025
Sat Nov 29 06:13:45 EST 2025
Wed Aug 27 03:08:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords sensor networks (SNs)
distributed consensus observers
partial differential equation (PDE)
Bilinear matrix inequality (BMI)
H_{\infty} control
spatially distributed processes
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c195t-2d871d08a36fedce0b11f27cf50b6415c0d690a2d6e5b0ad17a7916bbf07bfac3
PageCount 10
ParticipantIDs crossref_primary_10_1109_TCNS_2014_2378874
ieee_primary_6979213
crossref_citationtrail_10_1109_TCNS_2014_2378874
PublicationCentury 2000
PublicationDate 2015-June
2015-6-00
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-June
PublicationDecade 2010
PublicationTitle IEEE transactions on control of network systems
PublicationTitleAbbrev TCNS
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
curtain (ref23) 1995
ref15
ref14
ray (ref1) 1981
ref10
ref16
ref19
ref18
quoc (ref28) 2012; 57
wu (ref11) 2009; 20
wu (ref9) 2008; 16
ref24
wu (ref25) 2014
cristofides (ref2) 2001
ref26
gabinet (ref29) 1995
ref20
ref21
luo (ref12) 2012; 42
ref27
ref8
ref7
ref4
ref3
ref6
ref5
yu (ref17) 2009; 39
khalil (ref22) 2002
References_xml – year: 1995
  ident: ref23
  publication-title: An Introduction to Infinite-Dimensional Linear Systems Theory
  doi: 10.1007/978-1-4612-4224-6
– year: 2002
  ident: ref22
  publication-title: Nonlinear Systems
– year: 2001
  ident: ref2
  publication-title: Nonlinear and Robust Control of PDE Systems Methods and Applications to Transport-Reaction Processes
  doi: 10.1007/978-1-4612-0185-4
– ident: ref6
  doi: 10.1109/TAC.1982.1102875
– volume: 42
  start-page: 1538
  year: 2012
  ident: ref12
  article-title: Approximate optimal control design for nonlinear one-dimensional parabolic PDE systems using empirical eigenfunctions and neural network
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2012.2194781
– ident: ref24
  doi: 10.1016/j.jprocont.2014.02.017
– ident: ref14
  doi: 10.1109/TIE.2009.2015754
– ident: ref16
  doi: 10.1109/MIC.2006.38
– year: 1995
  ident: ref29
  publication-title: LMI control toolbox for use with MATLAB
– volume: 57
  start-page: 1377
  year: 2012
  ident: ref28
  article-title: Combining convex-concave decompositions and linearization approaches for solving BMIs, with application to static output feedback
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2011.2176154
– ident: ref20
  doi: 10.1016/j.sysconle.2009.10.001
– ident: ref10
  doi: 10.1109/TFUZZ.2009.2020506
– ident: ref13
  doi: 10.1109/JPROC.2003.814926
– ident: ref7
  doi: 10.1016/0022-247X(88)90401-5
– ident: ref18
  doi: 10.1109/CDC.2007.4434303
– volume: 39
  start-page: 1568
  year: 2009
  ident: ref17
  article-title: Distributed consensus filtering in sensor networks
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2009.2021254
– ident: ref26
  doi: 10.1137/S0363012994272630
– ident: ref15
  doi: 10.1007/978-1-84882-656-4
– ident: ref3
  doi: 10.1007/978-94-007-0741-2
– ident: ref8
  doi: 10.1016/j.ces.2008.06.026
– ident: ref21
  doi: 10.1016/j.automatica.2009.11.015
– ident: ref27
  doi: 10.1109/ACC.1994.751863
– ident: ref4
  doi: 10.1016/S0167-6911(99)00108-5
– year: 2014
  ident: ref25
  article-title: Distributed consensus observers based $H_{\infty}$ control of dissipative PDE systems using sensor networks
  publication-title: ArXiv e-prints
– ident: ref19
  doi: 10.1016/j.automatica.2010.06.025
– year: 1981
  ident: ref1
  publication-title: Advanced Process Control
– ident: ref5
  doi: 10.1006/jmaa.2000.6994
– volume: 20
  start-page: 1630
  year: 2009
  ident: ref11
  article-title: Adaptive neural control design for nonlinear distributed parameter systems with persistent bounded disturbances
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2009.2028887
– volume: 16
  start-page: 502
  year: 2008
  ident: ref9
  article-title: $H_{\infty}$ fuzzy observer-based control for a class of nonlinear distributed parameter systems with control constraints
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2007.896351
SSID ssj0001255873
Score 2.1194298
Snippet This paper considers the problem of finite dimensional output feedback H ∞ control for a class of nonlinear spatially distributed processes described by highly...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 112
SubjectTerms Bilinear matrix inequality
Control design
Eigenvalues and eigenfunctions
Observers
Partial differential equation
Spatially distributed processes
Tin
Topology
Vectors
Title Distributed Consensus Observers-Based H Control of Dissipative PDE Systems Using Sensor Networks
URI https://ieeexplore.ieee.org/document/6979213
Volume 2
WOSCitedRecordID wos000365085700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2372-2533
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255873
  issn: 2325-5870
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1q8aAHv6pYv9iDJzHtZpPNJke1LT1ILbRCb3E_QZBGmra_351NLBVE8BaSnRDyQmZm9-17CN0SISjlTAeJkjYABbBAMEUD6aphkVpiMuFFXJ_5aJTOZtm4ge43e2GMMZ58Zjpw6NfydaFWMFXWTTKeUbCo3eE8qfZqbc2nMJbyqF64DEnWnT6NJsDdijsURNN5_CP1bHmp-FQyOPzfQxyhg7pkxA8VxseoYeYnaH9LSLCF3nqgfwvWVUZj8OAEA4sSv0iYcwXK-6NLVhoP4Row03FhsQspPZ96bfC418e1djn2JAI8cXcoFnhUscTLU_Q66E-fhkHtnRCoMGPLgGrXCWmSiiixQPQkMgwt5coyIhOXtBXRri8WVCeGSSJ0yAV3laKUlnBphYrOUHNezM05wkxTaeNY8EioODKp5NTqKM5S95sUmpI2It-vNVe1sDj4W3zkvsEgWQ5I5IBEXiPRRnebkM9KVeOvwS1AYTOwBuDi99OXaM8Fs4rNdYWay8XKXKNdtV6-l4sb_818AVxhwes
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA1jCuqDtynOax58EruladO0j-o2Js462IS91VxBkE12-_3ma-uYIIJvpU1CySn9vi85OQehayIEpZxpL1LSeqAA5gmmqCddNixiS0wichHXHk_TeDRK-hV0uzoLY4zJyWemAZf5Xr6eqAUslTWjhCcULGo3WBhSUpzWWltRYSzmQbl16ZOkOXxIB8DeChsUZNN5-CP4rLmp5MGks_e_19hHu2XSiO8KlA9QxYwP0c6alGANvbVAARfMq4zG4MIJFhYz_CJh1RVI7_cuXGnchWfATccTi12XWc6oXhrcb7VxqV6OcxoBHrgRJlOcFjzx2RF67bSHD12vdE_wlJ-wuUe1q4U0iUUQWaB6Eun7lnJlGZGRC9uKaFcZC6ojwyQR2ueCu1xRSku4tEIFx6g6nozNCcJMU2nDUPBAqDAwseTU6iBMYvejFJqSOiLf05qpUlocHC4-srzEIEkGSGSARFYiUUc3qy6fha7GX41rgMKqYQnA6e-3r9BWd_jcy3qP6dMZ2nYDsYLbdY6q8-nCXKBNtZy_z6aX-ffzBZtPxTI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Consensus+Observers-Based+%24H_%7B%5Cinfty%7D+%24+Control+of+Dissipative+PDE+Systems+Using+Sensor+Networks&rft.jtitle=IEEE+transactions+on+control+of+network+systems&rft.au=Wu%2C+Huai-Ning&rft.au=Wang%2C+Hong-Du&rft.date=2015-06-01&rft.issn=2325-5870&rft.eissn=2372-2533&rft.volume=2&rft.issue=2&rft.spage=112&rft.epage=121&rft_id=info:doi/10.1109%2FTCNS.2014.2378874&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCNS_2014_2378874
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-5870&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-5870&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-5870&client=summon