Relevance Feedback For Image Retrieval Using Transfer Learning and Improved MQHOA

Image retrieval is a challenging technology in multimedia applications where meeting the users’ subjective retrieval needs while achieving high retrieval performance is insufficient for existing methods. In this work, a related feedback image retrieval algorithm based on deep learning and optimizati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of physics. Conference series Ročník 1880; číslo 1; s. 12006
Hlavní autori: Wang, Huaqiu, Liu, Qian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bristol IOP Publishing 01.04.2021
Predmet:
ISSN:1742-6588, 1742-6596
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Image retrieval is a challenging technology in multimedia applications where meeting the users’ subjective retrieval needs while achieving high retrieval performance is insufficient for existing methods. In this work, a related feedback image retrieval algorithm based on deep learning and optimization algorithm (CAMQHOA-RF) is proposed. Transfer learning based on the deep convolutional neural network is applied to extract deeper image features to reduce the semantic gap. The multi-scale quantum harmonic oscillator algorithm improved by the idea of “aggregation” is introduced to search the feature space effectively. The covariance matrix is used to strengthen the relationship between feature points at different scales to guide feature points to approach ideal query points faster. Moreover, the query point is reselected based on the feedback information to explore more potential users’ interest areas. Experiments have shown that compared with other algorithms, the proposed algorithm has fewer parameters that need to be set, but higher retrieval accuracy, faster retrieval speed, and stronger robustness are obtained, which can meet users better.
AbstractList Image retrieval is a challenging technology in multimedia applications where meeting the users’ subjective retrieval needs while achieving high retrieval performance is insufficient for existing methods. In this work, a related feedback image retrieval algorithm based on deep learning and optimization algorithm (CAMQHOA-RF) is proposed. Transfer learning based on the deep convolutional neural network is applied to extract deeper image features to reduce the semantic gap. The multi-scale quantum harmonic oscillator algorithm improved by the idea of “aggregation” is introduced to search the feature space effectively. The covariance matrix is used to strengthen the relationship between feature points at different scales to guide feature points to approach ideal query points faster. Moreover, the query point is reselected based on the feedback information to explore more potential users’ interest areas. Experiments have shown that compared with other algorithms, the proposed algorithm has fewer parameters that need to be set, but higher retrieval accuracy, faster retrieval speed, and stronger robustness are obtained, which can meet users better.
Author Wang, Huaqiu
Liu, Qian
Author_xml – sequence: 1
  givenname: Huaqiu
  surname: Wang
  fullname: Wang, Huaqiu
– sequence: 2
  givenname: Qian
  surname: Liu
  fullname: Liu, Qian
BookMark eNo9kF9rwjAUxcNwMHX7DAvsuWvSNGn6KDKn0CGKPof8uZU6TV2iwr79Whzel3s553AP_EZo4FsPCL1S8k6JlCkt8iwRvBQplZKkNCU0I0Q8oOHdGdxvKZ_QKMY9IaybYohWazjAVXsLeAbgjLbfeNYGvDjqHeA1nEPT2Qe8jY3f4U3QPtYQcAU6-F7R3nXZU2iv4PDXar6cPKPHWh8ivPzvMdrOPjbTeVItPxfTSZVYWnKRsJrlJmelY6bguhZMOwG1KU0OUFrCgBrpslJqziVnhjohTWaZ5TnXwmWMjdHb7W9X_nOBeFb79hJ8V6kyTmVREEZFlypuKRvaGAPU6hSaow6_ihLV81M9GdVTUj0_RdWNH_sDqw9j1A
Cites_doi 10.1109/TMM.2010.2046269
10.1016/j.neucom.2013.08.007
10.1109/TPAMI.2017.2709749
10.1109/TGRS.2015.2478379
10.1016/j.neucom.2014.07.078
10.3390/e20080577
10.1016/j.asoc.2010.11.009
ContentType Journal Article
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1880/1/012006
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1880_1_012006
Genre Conference Proceeding
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
AAYXX
ABHWH
ACAFW
ACHIP
AEFHF
AEINN
AEJGL
AFFHD
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KQ8
LAP
N5L
N9A
O3W
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJBAE
PQGLB
RIN
RNS
RO9
ROL
SY9
T37
TR2
W28
XSB
~02
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c1956-3f34b439d3b75af63ad6efb9b4ee9c03e1b8d298a55853b1d68b2c3c545a6d233
IEDL.DBID P5Z
ISSN 1742-6588
IngestDate Sun Nov 09 07:35:29 EST 2025
Sat Nov 29 01:48:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1956-3f34b439d3b75af63ad6efb9b4ee9c03e1b8d298a55853b1d68b2c3c545a6d233
Notes ObjectType-Conference Proceeding-1
SourceType-Scholarly Journals-1
content type line 14
OpenAccessLink https://www.proquest.com/docview/2518770316?pq-origsite=%requestingapplication%
PQID 2518770316
PQPubID 4998668
ParticipantIDs proquest_journals_2518770316
crossref_primary_10_1088_1742_6596_1880_1_012006
PublicationCentury 2000
PublicationDate 20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 20210401
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Li (JPCS_1880_1_012006bib6) 2013; 11
Babenko (JPCS_1880_1_012006bib1) 2014; 8689
Tzelepi (JPCS_1880_1_012006bib8) 2014; 127
Broilo (JPCS_1880_1_012006bib9) 2010; 12
Wang (JPCS_1880_1_012006bib5) 2011; 11
Moreno-Picot (JPCS_1880_1_012006bib10) 2011; 151
Zheng (JPCS_1880_1_012006bib3) 2018; 40
Lu (JPCS_1880_1_012006bib4) 2018; 20
Wang (JPCS_1880_1_012006bib7) 2014; 127
Su (JPCS_1880_1_012006bib12) 2018
Romero (JPCS_1880_1_012006bib2) 2016; 54
Kanimozhi (JPCS_1880_1_012006bib11) 2015; 11
References_xml – volume: 12
  start-page: 267
  year: 2010
  ident: JPCS_1880_1_012006bib9
  article-title: A stochastic approach to image retrieval using relevance feedback and particle swarm optimization
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2010.2046269
– volume: 127
  start-page: 214
  year: 2014
  ident: JPCS_1880_1_012006bib7
  article-title: An image retrieval scheme with relevance feedback using feature reconstruction and SVM reclassification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.007
– volume: 8689
  start-page: 584
  year: 2014
  ident: JPCS_1880_1_012006bib1
– year: 2018
  ident: JPCS_1880_1_012006bib12
  article-title: Is Robustness the Cost of Accuracy?
– volume: 40
  start-page: 1224
  year: 2018
  ident: JPCS_1880_1_012006bib3
  article-title: SIFT meets CNN:A decade survey of instance retrieval
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2017.2709749
– volume: 54
  start-page: 1349
  year: 2016
  ident: JPCS_1880_1_012006bib2
  article-title: Unsupervised deep feature extraction for remote sensing image classification
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2015.2478379
– volume: 127
  start-page: 214
  year: 2014
  ident: JPCS_1880_1_012006bib8
  article-title: Relevance Feedback in Deep Convolutional Neural Networks for Content Based Image Retrieval
  publication-title: Neurocomputing
– volume: 11
  start-page: 1099
  year: 2015
  ident: JPCS_1880_1_012006bib11
  article-title: An integrated approach to region based image retrieval using firefly algorithm and support vector machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.07.078
– volume: 20
  start-page: 577
  year: 2018
  ident: JPCS_1880_1_012006bib4
  article-title: An adaptive weight method for image retrieval based multi-feature fusion. Entropy
  publication-title: Entropy
  doi: 10.3390/e20080577
– volume: 151
  start-page: 1782
  year: 2011
  ident: JPCS_1880_1_012006bib10
  article-title: Distance-based relevance feedback using a hybrid interactive genetic algorithm for image retrieval
  publication-title: Applied Soft Computing
– volume: 11
  start-page: 2787
  year: 2011
  ident: JPCS_1880_1_012006bib5
  article-title: A new integrated SVM classifiers for relevance feedback content-based image retrieval using EM. parameter estimation
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.11.009
– volume: 11
  start-page: 3634
  year: 2013
  ident: JPCS_1880_1_012006bib6
  article-title: Improving Relevance Feedback in Image Retrieval by Incorporating Unlabelled Images
  publication-title: Telkomnika Indonesian Journal of Electrical Engineering
SSID ssj0033337
Score 2.2549229
Snippet Image retrieval is a challenging technology in multimedia applications where meeting the users’ subjective retrieval needs while achieving high retrieval...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 12006
SubjectTerms Algorithms
Artificial neural networks
Covariance matrix
Feature extraction
Feedback
Harmonic oscillators
Image management
Image retrieval
Machine learning
Multimedia
Optimization
Physics
Title Relevance Feedback For Image Retrieval Using Transfer Learning and Improved MQHOA
URI https://www.proquest.com/docview/2518770316
Volume 1880
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Journals Open Access
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagBYmFN6JQKg-sVhI7D2dCBbWiEi1pBaiwWH4FIURb0sLvx3YSAQsL2Zws0d35vvP5uzsAzpM8JCZMSBDWMkIh0THiUUhQSFWIOU1y4pI5DzfJaESn0zSrEm7LilZZ-0TnqNVc2hy5Z3CYJrbZenyxeEd2apS9Xa1GaKyDpu2SYEc3ZNFT7YmJeZKyIBIjg7S05neZQ1_1Lo0925DMCzxbRGrHHv1Ep9_O2SFOf-e__7oLtqtYE3ZL49gDa3q2DzYd51MuD8B4YmvLrdZh32CY4PIV9ucFHLwZHwMnbtSWsUPoWAXQgVquC1h1ZH2GfKZgmZPQCg7H17fdQ3Df791dXaNqwgKStk4QkZyEwoQkiogk4nlMuIp1LlIRap1Kn-hAUIVTyiNzqiAiUDEVWBJpwi4eK0zIEWjM5jN9DGCSchwQJY3IcZhrXwgTGwRmQSMtU99vAb-WLFuUjTSYuwCnlFllMKsMZpXBAlYqowXatXhZtbOW7Fu2J39_PgVb2PJPHMumDRqr4kOfgQ35uXpZFh3QvOyNsknHGYxZZYNh9vgFYQ_D-A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKQguvFFLC-wBjqvYu2t7fUBVBUSJmoS0Kqicln0ZVYikJAXEn-I3MrO2BVy49YBvtk_2N_t9s7PzAHhWNUqim1BxEX3BlYwlt4WSXOmghNVVI1Mw5920ms_12Vm92IKffS0MpVX2nJiIOqw8xciHqMO6ombr5cHFF05To-h0tR-h0ZrFUfzxHbdsmxeTV4jvcyFGr09fjnk3VYB7qo3jspHKoQwH6arCNqW0oYyNq52KsfaZjLnTQdTaFuhJS5eHUjvhpUdXw5ZBUAAUKX9bkbEPYHsxmS3e99wv8araEkzBUdt1n1GG28zuWV0OqQXaMB9S2SoNWvpTD_-Wg6Rxo9v_29-5A7c6b5odtuZ_F7bi8h5cT1mtfnMfjk-oep7smo1QpZ31n9hotWaTz8ii7CQNE8OVxlLeBEuy3cQ163rOfmR2GVgbdYmBzY7Hbw4fwNsr-Z6HMFiulnEHWFVbkcvgEWKhmpg5h95Pjje6iL7Osl3IeiTNRdsqxKQjfq0NgW8IfEPgm9y04O_Cfg-n6bhjY35j-ejfr5_CjfHpbGqmk_nRHtwUlG2Tcor2YXC5_hofwzX_7fJ8s37SmSmDD1eN_S_Yfx9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relevance+Feedback+For+Image+Retrieval+Using+Transfer+Learning+and+Improved+MQHOA&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Wang%2C+Huaqiu&rft.au=Liu%2C+Qian&rft.date=2021-04-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1880&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1880%2F1%2F012006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon