Data‐driven approach to design energy‐efficient joint precoders at source and relay using deep learning in MIMO‐CRNs

This article studies the problem of designing energy‐efficient joint precoder at source and relay for multiple‐input multiple‐output cognitive relay networks (MIMO‐CRNs). Existing optimization methods typically suffer from high computational complexity of finding the optimal solution for such noncon...

Full description

Saved in:
Bibliographic Details
Published in:Transactions on emerging telecommunications technologies Vol. 33; no. 5
Main Authors: Sahu, Deepak, Maurya, Shikha, Bansal, Matadeen, Kumar, Dinesh
Format: Journal Article
Language:English
Published: 01.05.2022
ISSN:2161-3915, 2161-3915
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article studies the problem of designing energy‐efficient joint precoder at source and relay for multiple‐input multiple‐output cognitive relay networks (MIMO‐CRNs). Existing optimization methods typically suffer from high computational complexity of finding the optimal solution for such nonconvex fractional programming problems. In contrast to prior works, this article considers a data‐driven approach to design the joint precoders using a deep neural network (DNN). The proposed DNN learns the optimal precoder weights on a set of different channel matrices during the offline training phase and allows the computational cost reduction in the online deployment phase. The numerical results demonstrate that this approach provides a comparable performance at significantly lower computational complexity in comparison with the conventional optimization‐based algorithm. Furthermore, it is shown that the proposed approach is quite robust against the variations in the channel statistics, which makes it suitable for real‐time implementation. This article studies the problem of designing an energy‐efficient joint precoder at source and relay for multiple‐input multiple‐output cognitive relay networks (MIMO‐CRNs) by using a deep neural network (DNN). The proposed DNN is compared with the existing iterative optimization method. From analysis, it is shown that the proposed approach provides comparable performance at significantly lower computational complexity in comparison with the conventional optimization‐based algorithm. Furthermore, the proposed approach is quite robust against the variations in the channel statistics, which makes it suitable for real‐time implementation.
AbstractList This article studies the problem of designing energy‐efficient joint precoder at source and relay for multiple‐input multiple‐output cognitive relay networks (MIMO‐CRNs). Existing optimization methods typically suffer from high computational complexity of finding the optimal solution for such nonconvex fractional programming problems. In contrast to prior works, this article considers a data‐driven approach to design the joint precoders using a deep neural network (DNN). The proposed DNN learns the optimal precoder weights on a set of different channel matrices during the offline training phase and allows the computational cost reduction in the online deployment phase. The numerical results demonstrate that this approach provides a comparable performance at significantly lower computational complexity in comparison with the conventional optimization‐based algorithm. Furthermore, it is shown that the proposed approach is quite robust against the variations in the channel statistics, which makes it suitable for real‐time implementation.
This article studies the problem of designing energy‐efficient joint precoder at source and relay for multiple‐input multiple‐output cognitive relay networks (MIMO‐CRNs). Existing optimization methods typically suffer from high computational complexity of finding the optimal solution for such nonconvex fractional programming problems. In contrast to prior works, this article considers a data‐driven approach to design the joint precoders using a deep neural network (DNN). The proposed DNN learns the optimal precoder weights on a set of different channel matrices during the offline training phase and allows the computational cost reduction in the online deployment phase. The numerical results demonstrate that this approach provides a comparable performance at significantly lower computational complexity in comparison with the conventional optimization‐based algorithm. Furthermore, it is shown that the proposed approach is quite robust against the variations in the channel statistics, which makes it suitable for real‐time implementation. This article studies the problem of designing an energy‐efficient joint precoder at source and relay for multiple‐input multiple‐output cognitive relay networks (MIMO‐CRNs) by using a deep neural network (DNN). The proposed DNN is compared with the existing iterative optimization method. From analysis, it is shown that the proposed approach provides comparable performance at significantly lower computational complexity in comparison with the conventional optimization‐based algorithm. Furthermore, the proposed approach is quite robust against the variations in the channel statistics, which makes it suitable for real‐time implementation.
Author Bansal, Matadeen
Kumar, Dinesh
Sahu, Deepak
Maurya, Shikha
Author_xml – sequence: 1
  givenname: Deepak
  surname: Sahu
  fullname: Sahu, Deepak
  email: 1812602@iiitdmj.ac.in
  organization: PDPM‐Indian Institute of Information Technology, Design and Manufacturing Jabalpur
– sequence: 2
  givenname: Shikha
  orcidid: 0000-0002-8261-2523
  surname: Maurya
  fullname: Maurya, Shikha
  organization: National Institute of Technology, Patna
– sequence: 3
  givenname: Matadeen
  surname: Bansal
  fullname: Bansal, Matadeen
  organization: PDPM‐Indian Institute of Information Technology, Design and Manufacturing Jabalpur
– sequence: 4
  givenname: Dinesh
  surname: Kumar
  fullname: Kumar, Dinesh
  organization: PDPM‐Indian Institute of Information Technology, Design and Manufacturing Jabalpur
BookMark eNp1kEFOwzAQRS1UJEqpxBG8ZJNip3HSLFEpUKkFCZV1NInHxVWwI9sFhRVH4IychJSyQAhmMfNHev8v_jHpGWuQkFPORpyx-BxDGCWJSA5IP-Ypj8Y5F70f-ogMvd-wbjIRi2TSJ6-XEODj7V06_YyGQtM4C9UjDZZK9HptKBp067ZDUCldaTSBbqzuduOwshKdpxCot1tXIQUjqcMaWrr12qy7DGxojeDM7tOGLufLuy5ren_rT8ihgtrj8PsOyMPVbDW9iRZ31_PpxSKqeC6SSCkoucQJxrFEkbI0KxNMshwyLKVIyxxUJZjIylIoJSRDJUSqpBjnwCZ8osYDMtrnVs5671AVlQ4QtDXBga4LzopdeUVXXrErrzOc_TI0Tj-Ba_9Coz36omts_-WK2Wr1xX8Ck7qFcA
CitedBy_id crossref_primary_10_1002_ett_4527
crossref_primary_10_1002_int_22934
Cites_doi 10.1109/MWC.001.1900491
10.1109/TVT.2019.2893928
10.1109/DYSPAN.2007.14
10.1109/JPROC.2009.2015717
10.1109/LWC.2017.2757490
10.1002/ett.4243
10.1109/TCCN.2018.2881442
10.1109/TWC.2004.840199
10.1016/S0893-6080(98)00116-6
10.1109/TVT.2019.2951501
10.1109/COMST.2020.2964534
10.1007/s10589-020-00220-z
10.1109/JSYST.2019.2937463
10.1109/TCOMM.2021.3071536
10.1016/j.phycom.2018.08.002
10.1109/TCCN.2021.3049475
10.1109/MWC.2019.1900027
10.1109/LWC.2017.2726533
10.1002/ett.4352
10.1109/SURV.2012.100412.00017
10.1049/iet-com.2018.5447
10.1109/TSP.2017.2770093
10.1002/ett.4388
10.1109/ACCESS.2019.2942390
10.1109/JSAC.2004.829340
10.1002/ett.4283
10.1109/JSAC.2013.130510
10.1109/TVT.2020.2965959
10.1109/MCOM.2014.6736761
10.1109/TVT.2018.2819682
10.1109/LCOMM.2020.3011978
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
DOI 10.1002/ett.4454
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-3915
EndPage n/a
ExternalDocumentID 10_1002_ett_4454
ETT4454
Genre article
GroupedDBID .GA
.Y3
05W
1OC
31~
50Z
8-0
8-1
8-3
8-4
8-5
930
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
HGLYW
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RX1
SUPJJ
V2E
WIH
WIK
WXSBR
AAYXX
CITATION
ID FETCH-LOGICAL-c1954-ffab1de8e22de56067b4e479a7ebd56b9afc5057bb5ff5d0ef556fd539a0818f3
IEDL.DBID DRFUL
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000753249900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2161-3915
IngestDate Sat Nov 29 05:58:09 EST 2025
Tue Nov 18 22:32:56 EST 2025
Sun Jul 06 04:45:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1954-ffab1de8e22de56067b4e479a7ebd56b9afc5057bb5ff5d0ef556fd539a0818f3
ORCID 0000-0002-8261-2523
PageCount 16
ParticipantIDs crossref_citationtrail_10_1002_ett_4454
crossref_primary_10_1002_ett_4454
wiley_primary_10_1002_ett_4454_ETT4454
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Transactions on emerging telecommunications technologies
PublicationYear 2022
References 2021; 69
2019; 7
2004; 22
2017; 6
2019; 13
2020; 14
2020; 77
2018; 67
2018; 66
2018; 7
2013; 15
2018; 4
2009; 97
2021
2019; 68
2013; 31
2020; 27
2005; 4
1999; 12
2020; 69
2018; 30
2020; 24
2016
2020; 22
2014; 52
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
Goodfellow I. (e_1_2_7_32_1) 2016
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 66
  start-page: 573
  issue: 3
  year: 2018
  end-page: 588
  article-title: Optimal energy‐efficient source and relay precoder design for cooperative MIMO‐AF systems
  publication-title: IEEE Trans Signal Process
– volume: 22
  start-page: 1251
  issue: 2
  year: 2020
  end-page: 1275
  article-title: Machine learning for resource management in cellular and IoT networks: potentials, current solutions, and open challenges
  publication-title: IEEE Commun Surv Tutor
– volume: 67
  start-page: 4910
  issue: 6
  year: 2018
  end-page: 4924
  article-title: Energy efficiency for SWIPT in MIMO two‐way amplify‐and‐forward relay networks
  publication-title: IEEE Trans Veh Technol
– volume: 4
  start-page: 648
  issue: 4
  year: 2018
  end-page: 664
  article-title: A very brief introduction to machine learning with applications to communication systems
  publication-title: IEEE Trans Cognit Commun Netw
– volume: 24
  start-page: 2518
  issue: 11
  year: 2020
  end-page: 2521
  article-title: Deep learning‐based precoder design in MIMO systems with finite‐alphabet inputs
  publication-title: IEEE Commun Lett
– volume: 52
  start-page: 186
  issue: 2
  year: 2014
  end-page: 195
  article-title: Massive MIMO for next generation wireless systems
  publication-title: IEEE Commun Mag
– year: 2021
  article-title: Joint relay and channel selection in relay aided anti jamming system: a reinforcement learning approach
  publication-title: Trans Emerg Telecommun Technol
– volume: 6
  start-page: 646
  issue: 5
  year: 2017
  end-page: 649
  article-title: Energy efficient precoder design for non‐regenerative MIMO‐CRN
  publication-title: IEEE Wirel Commun Lett
– volume: 7
  start-page: 114
  issue: 1
  year: 2018
  end-page: 117
  article-title: Power of deep learning for channel estimation and signal detection in OFDM systems
  publication-title: IEEE Wirel Commun Lett
– year: 2021
  article-title: Spectrum sensing in cognitive radio: a deep learning based model
  publication-title: Trans Emerg Telecommun Technol
– volume: 97
  start-page: 894
  issue: 5
  year: 2009
  end-page: 914
  article-title: Breaking spectrum gridlock with cognitive radios: an information theoretic perspective
  publication-title: Proc IEEE
– year: 2016
– volume: 31
  start-page: 916
  issue: 5
  year: 2013
  end-page: 925
  article-title: Power minimization in MIMO cognitive networks using beamforming games
  publication-title: IEEE J Select Areas Commun
– volume: 27
  start-page: 214
  issue: 1
  year: 2020
  end-page: 222
  article-title: Deep learning for physical‐layer 5G wireless techniques: opportunities, challenges and solutions
  publication-title: IEEE Wirel Commun
– volume: 15
  start-page: 1136
  year: 2013
  end-page: 1159
  article-title: A survey on machine‐learning techniques in cognitive radios
  publication-title: IEEE Commun Surv Tutor
– volume: 69
  start-page: 3465
  issue: 3
  year: 2020
  end-page: 3469
  article-title: Deep artificial noise: deep learning‐based precoding optimization for artificial noise scheme
  publication-title: IEEE Trans Veh Technol
– volume: 14
  start-page: 3414
  issue: 3
  year: 2020
  end-page: 3417
  article-title: Deep learning‐based MIMO‐NOMA with imperfect SIC decoding
  publication-title: IEEE Syst J
– volume: 30
  start-page: 122
  year: 2018
  end-page: 131
  article-title: Joint source and relay precoder design for MIMO‐CRN
  publication-title: Phys Commun
– volume: 13
  start-page: 2226
  issue: 15
  year: 2019
  end-page: 2234
  article-title: Joint source and relay precoder design for energy‐efficient MIMO‐cognitive relay networks
  publication-title: IET Commun
– volume: 69
  start-page: 4476
  issue: 7
  year: 2021
  end-page: 4488
  article-title: Multi‐objective DNN‐based precoder for MIMO communications
  publication-title: IEEE Trans Commun
– volume: 12
  start-page: 145
  issue: 1
  year: 1999
  end-page: 151
  article-title: On the momentum term in gradient descent learning algorithms neural networks
  publication-title: J Int Neural Netw Soc
– volume: 7
  start-page: 137184
  year: 2019
  end-page: 137206
  article-title: Machine learning for 5G/B5G mobile and wireless communications: potential, limitations, and future directions
  publication-title: IEEE Access
– year: 2021
  article-title: Deep learning based power optimizing for NOMA based relay aided D2D transmissions
  publication-title: IEEE Trans Cognit Commun Netw
– year: 2021
  article-title: Antenna selection in nonorthogonal multiple access multiple input multiple output systems aided by machine learning
  publication-title: Trans Emerg Telecommun Technol
– volume: 68
  start-page: 3027
  issue: 3
  year: 2019
  end-page: 3032
  article-title: Deep‐learning‐based millimeter‐wave massive MIMO for hybrid precoding
  publication-title: IEEE Trans Veh Technol
– volume: 69
  start-page: 552
  issue: 1
  year: 2020
  end-page: 563
  article-title: Hybrid precoding for multiuser millimeter wave massive MIMO systems: a deep learning approach
  publication-title: IEEE Trans Veh Technol
– volume: 4
  start-page: 757
  issue: 2
  year: 2005
  end-page: 764
  article-title: MIMO transmission over a time‐varying channel using SVD
  publication-title: IEEE Trans Wirel Commun
– year: 2021
  article-title: Machine learning for cooperative spectrum sensing and sharing: a survey
  publication-title: Trans Emerg Telecommun Technol
– volume: 27
  start-page: 133
  issue: 4
  year: 2020
  end-page: 139
  article-title: Deep learning for wireless communications: an emerging interdisciplinary paradigm
  publication-title: IEEE Wirel Commun
– volume: 22
  start-page: 1206
  issue: 7
  year: 2004
  end-page: 1219
  article-title: On the throughput enhancement of the downstream channel in cellular radio networks through multihop relaying
  publication-title: IEEE J Select Areas Commun
– volume: 77
  start-page: 653
  year: 2020
  end-page: 710
  article-title: Momentum and stochastic momentum for stochastic Gradient, Newton, proximal point and subspace descent methods
  publication-title: Comput Optim Appl
– ident: e_1_2_7_4_1
  doi: 10.1109/MWC.001.1900491
– ident: e_1_2_7_20_1
  doi: 10.1109/TVT.2019.2893928
– ident: e_1_2_7_30_1
  doi: 10.1109/DYSPAN.2007.14
– ident: e_1_2_7_8_1
  doi: 10.1109/JPROC.2009.2015717
– ident: e_1_2_7_22_1
  doi: 10.1109/LWC.2017.2757490
– ident: e_1_2_7_27_1
  doi: 10.1002/ett.4243
– ident: e_1_2_7_7_1
  doi: 10.1109/TCCN.2018.2881442
– ident: e_1_2_7_31_1
  doi: 10.1109/TWC.2004.840199
– ident: e_1_2_7_33_1
  doi: 10.1016/S0893-6080(98)00116-6
– ident: e_1_2_7_3_1
– ident: e_1_2_7_19_1
  doi: 10.1109/TVT.2019.2951501
– ident: e_1_2_7_5_1
  doi: 10.1109/COMST.2020.2964534
– ident: e_1_2_7_34_1
  doi: 10.1007/s10589-020-00220-z
– ident: e_1_2_7_17_1
  doi: 10.1109/JSYST.2019.2937463
– ident: e_1_2_7_28_1
  doi: 10.1109/TCOMM.2021.3071536
– ident: e_1_2_7_15_1
  doi: 10.1016/j.phycom.2018.08.002
– ident: e_1_2_7_18_1
  doi: 10.1109/TCCN.2021.3049475
– ident: e_1_2_7_6_1
  doi: 10.1109/MWC.2019.1900027
– ident: e_1_2_7_14_1
  doi: 10.1109/LWC.2017.2726533
– ident: e_1_2_7_25_1
  doi: 10.1002/ett.4352
– ident: e_1_2_7_29_1
  doi: 10.1109/SURV.2012.100412.00017
– ident: e_1_2_7_16_1
  doi: 10.1049/iet-com.2018.5447
– ident: e_1_2_7_13_1
  doi: 10.1109/TSP.2017.2770093
– ident: e_1_2_7_26_1
  doi: 10.1002/ett.4388
– ident: e_1_2_7_2_1
  doi: 10.1109/ACCESS.2019.2942390
– ident: e_1_2_7_9_1
  doi: 10.1109/JSAC.2004.829340
– ident: e_1_2_7_21_1
  doi: 10.1002/ett.4283
– ident: e_1_2_7_11_1
  doi: 10.1109/JSAC.2013.130510
– ident: e_1_2_7_23_1
  doi: 10.1109/TVT.2020.2965959
– ident: e_1_2_7_10_1
  doi: 10.1109/MCOM.2014.6736761
– ident: e_1_2_7_12_1
  doi: 10.1109/TVT.2018.2819682
– volume-title: Deep Learning
  year: 2016
  ident: e_1_2_7_32_1
– ident: e_1_2_7_24_1
  doi: 10.1109/LCOMM.2020.3011978
SSID ssj0000752548
Score 2.2336597
Snippet This article studies the problem of designing energy‐efficient joint precoder at source and relay for multiple‐input multiple‐output cognitive relay networks...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
Title Data‐driven approach to design energy‐efficient joint precoders at source and relay using deep learning in MIMO‐CRNs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.4454
Volume 33
WOSCitedRecordID wos000753249900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2161-3915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000752548
  issn: 2161-3915
  databaseCode: DRFUL
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEIAXbT3owbdYX6wgeopN092kOUofKLRVSiu9hX2WiqSljYKe_An-Rn-JO5u0VlAQvCSXyRJ2dnd2hplvEDoT0vVDppUjmVEDYZw7XPieY4y5pEJUdGg7z903g3a70u-Hd1lWJdTCpHyIecANdoY9r2GDMz4tfkFDVZJcEkLJMsp7ZtmSHMrXOo1ecx5hMcbQeD-2JV0Jgixhic7os65XnH3-zR4t3k-tgWls_OfXNtF6dq3EV-k62EJLKt5GawuwwR30WmMJ-3h7lxM44PAMJo6TEZY2jQMrWwdoRJTlShhzhB9GQ_Mcg9sMGc-YJTgN92MWSwyFMC8YUucHZgw1xlkPigEexrh107o1Y1U77eku6jXq3eq1k3VecAQQ4BytGS9JVVGeJ5W5E_kBJ4oEIQsUl9TnRrsCPBvOqdZUukpT6mtJyyEDRJ4u76FcPIrVPsI68AVAv7hxhYky7ppLtKgQJkImWVD2CuhiNv-RyLDk0B3jMUqByl5kZjOC2Syg07nkOEVx_CBzbhXzq0BU73bhffBXwUO06kHFg81xPEK5ZPKkjtGKeE6G08lJtuY-Ad5B4Ms
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEIAHrYJ68C2-XUH0FG3T3aTBk6hFsa0iVbyFfUpF0lKjoCd_gr_RX-LOJqkKCoKX5DJZws7uzs4w8w3AllTlIOJGe4pbNVAuhCdk4HvWmCsmZc1ErvPcdSNstWo3N9HFEOwXtTAZH2IQcMOd4c5r3OAYkN77pIbqNN2llNFhGKF2FbESjBxd1q8agxCLtYbW_XE96SoYZYkqrMDPlv294vNvBunrBdVZmPrUv_5tGibziyU5yFbCDAzpZBYmvuAG5-DliKf8_fVN9fGIIwVOnKRdolwiB9GuEtCKaEeWsAaJ3HU79tlDxxlznglPSRbwJzxRBEthngkmz9_aMXSP5F0obkknIc3T5rkd6_Cy9TAPV_Xj9uGJl_de8CQy4DxjuKgoXdO-r7S9FQWhoJqGEQ-1UCwQVr8SfRshmDFMlbVhLDCKVSOOkDxTXYBS0k30IhATBhKxX8I6w1Rbh61MjaxRLiOueFj1l2CnUEAsczA59se4jzOksh_b2YxxNpdgcyDZy2AcP8hsO838KhAft9v4Xv6r4AaMnbSbjbhx2jpbgXEf6x9cxuMqlNL-o16DUfmUdh766_kC_ABG_OS7
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEIAHtSJ68C3WZwTR09p2m-wDT9IHirWKtOJtyVMqsi3tKujJn-Bv9JeYZHergoLgZfcyG5ZMkskMM98A7HNR9kKqpCOoVgOmjDmMe66jjbkgnAcqtJ3nblp-ux3c3oZXE3Cc18KkfIhxwM3sDHtemw0uB0KVPqmhMkmOMCZ4EgqYhJ7elYX6dbPbGodYtDXU7o_tSVcxUZawQnL8bNkt5Z9_M0hfL6jWwjQX_vVvizCfXSzRSboSlmBCxssw9wU3uAIvdZrQ99c3MTRHHMpx4ijpI2ETOZC0lYBaRFqyhDZI6L7f08-BcZxNzjOiCUoD_ojGAplSmGdkkufv9BhygLIuFHeoF6OLs4tLPVbtuj1ahW6z0amdOlnvBYcbBpyjFGUVIQPpukLqW5HnMyyxH1JfMkE8pvXLjW_DGFGKiLJUhHhKkGpIDSRPVddgKu7Hch2Q8j1usF9MO8NYaoetjBUPMOUhFdSvukU4zBUQ8QxMbvpjPEQpUtmN9GxGZjaLsDeWHKQwjh9kDqxmfhWIGp2OeW_8VXAXZq7qzah11j7fhFnXlD_YhMctmEqGj3IbpvlT0hsNd7L19wH8suQ2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data%E2%80%90driven+approach+to+design+energy%E2%80%90efficient+joint+precoders+at+source+and+relay+using+deep+learning+in+MIMO%E2%80%90CRNs&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Sahu%2C+Deepak&rft.au=Maurya%2C+Shikha&rft.au=Bansal%2C+Matadeen&rft.au=Kumar%2C+Dinesh&rft.date=2022-05-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=33&rft.issue=5&rft_id=info:doi/10.1002%2Fett.4454&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ett_4454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon