Data‐driven approach to design energy‐efficient joint precoders at source and relay using deep learning in MIMO‐CRNs
This article studies the problem of designing energy‐efficient joint precoder at source and relay for multiple‐input multiple‐output cognitive relay networks (MIMO‐CRNs). Existing optimization methods typically suffer from high computational complexity of finding the optimal solution for such noncon...
Saved in:
| Published in: | Transactions on emerging telecommunications technologies Vol. 33; no. 5 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.05.2022
|
| ISSN: | 2161-3915, 2161-3915 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article studies the problem of designing energy‐efficient joint precoder at source and relay for multiple‐input multiple‐output cognitive relay networks (MIMO‐CRNs). Existing optimization methods typically suffer from high computational complexity of finding the optimal solution for such nonconvex fractional programming problems. In contrast to prior works, this article considers a data‐driven approach to design the joint precoders using a deep neural network (DNN). The proposed DNN learns the optimal precoder weights on a set of different channel matrices during the offline training phase and allows the computational cost reduction in the online deployment phase. The numerical results demonstrate that this approach provides a comparable performance at significantly lower computational complexity in comparison with the conventional optimization‐based algorithm. Furthermore, it is shown that the proposed approach is quite robust against the variations in the channel statistics, which makes it suitable for real‐time implementation.
This article studies the problem of designing an energy‐efficient joint precoder at source and relay for multiple‐input multiple‐output cognitive relay networks (MIMO‐CRNs) by using a deep neural network (DNN). The proposed DNN is compared with the existing iterative optimization method. From analysis, it is shown that the proposed approach provides comparable performance at significantly lower computational complexity in comparison with the conventional optimization‐based algorithm. Furthermore, the proposed approach is quite robust against the variations in the channel statistics, which makes it suitable for real‐time implementation. |
|---|---|
| AbstractList | This article studies the problem of designing energy‐efficient joint precoder at source and relay for multiple‐input multiple‐output cognitive relay networks (MIMO‐CRNs). Existing optimization methods typically suffer from high computational complexity of finding the optimal solution for such nonconvex fractional programming problems. In contrast to prior works, this article considers a data‐driven approach to design the joint precoders using a deep neural network (DNN). The proposed DNN learns the optimal precoder weights on a set of different channel matrices during the offline training phase and allows the computational cost reduction in the online deployment phase. The numerical results demonstrate that this approach provides a comparable performance at significantly lower computational complexity in comparison with the conventional optimization‐based algorithm. Furthermore, it is shown that the proposed approach is quite robust against the variations in the channel statistics, which makes it suitable for real‐time implementation. This article studies the problem of designing energy‐efficient joint precoder at source and relay for multiple‐input multiple‐output cognitive relay networks (MIMO‐CRNs). Existing optimization methods typically suffer from high computational complexity of finding the optimal solution for such nonconvex fractional programming problems. In contrast to prior works, this article considers a data‐driven approach to design the joint precoders using a deep neural network (DNN). The proposed DNN learns the optimal precoder weights on a set of different channel matrices during the offline training phase and allows the computational cost reduction in the online deployment phase. The numerical results demonstrate that this approach provides a comparable performance at significantly lower computational complexity in comparison with the conventional optimization‐based algorithm. Furthermore, it is shown that the proposed approach is quite robust against the variations in the channel statistics, which makes it suitable for real‐time implementation. This article studies the problem of designing an energy‐efficient joint precoder at source and relay for multiple‐input multiple‐output cognitive relay networks (MIMO‐CRNs) by using a deep neural network (DNN). The proposed DNN is compared with the existing iterative optimization method. From analysis, it is shown that the proposed approach provides comparable performance at significantly lower computational complexity in comparison with the conventional optimization‐based algorithm. Furthermore, the proposed approach is quite robust against the variations in the channel statistics, which makes it suitable for real‐time implementation. |
| Author | Bansal, Matadeen Kumar, Dinesh Sahu, Deepak Maurya, Shikha |
| Author_xml | – sequence: 1 givenname: Deepak surname: Sahu fullname: Sahu, Deepak email: 1812602@iiitdmj.ac.in organization: PDPM‐Indian Institute of Information Technology, Design and Manufacturing Jabalpur – sequence: 2 givenname: Shikha orcidid: 0000-0002-8261-2523 surname: Maurya fullname: Maurya, Shikha organization: National Institute of Technology, Patna – sequence: 3 givenname: Matadeen surname: Bansal fullname: Bansal, Matadeen organization: PDPM‐Indian Institute of Information Technology, Design and Manufacturing Jabalpur – sequence: 4 givenname: Dinesh surname: Kumar fullname: Kumar, Dinesh organization: PDPM‐Indian Institute of Information Technology, Design and Manufacturing Jabalpur |
| BookMark | eNp1kEFOwzAQRS1UJEqpxBG8ZJNip3HSLFEpUKkFCZV1NInHxVWwI9sFhRVH4IychJSyQAhmMfNHev8v_jHpGWuQkFPORpyx-BxDGCWJSA5IP-Ypj8Y5F70f-ogMvd-wbjIRi2TSJ6-XEODj7V06_YyGQtM4C9UjDZZK9HptKBp067ZDUCldaTSBbqzuduOwshKdpxCot1tXIQUjqcMaWrr12qy7DGxojeDM7tOGLufLuy5ren_rT8ihgtrj8PsOyMPVbDW9iRZ31_PpxSKqeC6SSCkoucQJxrFEkbI0KxNMshwyLKVIyxxUJZjIylIoJSRDJUSqpBjnwCZ8osYDMtrnVs5671AVlQ4QtDXBga4LzopdeUVXXrErrzOc_TI0Tj-Ba_9Coz36omts_-WK2Wr1xX8Ck7qFcA |
| CitedBy_id | crossref_primary_10_1002_ett_4527 crossref_primary_10_1002_int_22934 |
| Cites_doi | 10.1109/MWC.001.1900491 10.1109/TVT.2019.2893928 10.1109/DYSPAN.2007.14 10.1109/JPROC.2009.2015717 10.1109/LWC.2017.2757490 10.1002/ett.4243 10.1109/TCCN.2018.2881442 10.1109/TWC.2004.840199 10.1016/S0893-6080(98)00116-6 10.1109/TVT.2019.2951501 10.1109/COMST.2020.2964534 10.1007/s10589-020-00220-z 10.1109/JSYST.2019.2937463 10.1109/TCOMM.2021.3071536 10.1016/j.phycom.2018.08.002 10.1109/TCCN.2021.3049475 10.1109/MWC.2019.1900027 10.1109/LWC.2017.2726533 10.1002/ett.4352 10.1109/SURV.2012.100412.00017 10.1049/iet-com.2018.5447 10.1109/TSP.2017.2770093 10.1002/ett.4388 10.1109/ACCESS.2019.2942390 10.1109/JSAC.2004.829340 10.1002/ett.4283 10.1109/JSAC.2013.130510 10.1109/TVT.2020.2965959 10.1109/MCOM.2014.6736761 10.1109/TVT.2018.2819682 10.1109/LCOMM.2020.3011978 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/ett.4454 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2161-3915 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_ett_4454 ETT4454 |
| Genre | article |
| GroupedDBID | .GA .Y3 05W 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR AAYXX CITATION |
| ID | FETCH-LOGICAL-c1954-ffab1de8e22de56067b4e479a7ebd56b9afc5057bb5ff5d0ef556fd539a0818f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000753249900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2161-3915 |
| IngestDate | Sat Nov 29 05:58:09 EST 2025 Tue Nov 18 22:32:56 EST 2025 Sun Jul 06 04:45:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1954-ffab1de8e22de56067b4e479a7ebd56b9afc5057bb5ff5d0ef556fd539a0818f3 |
| ORCID | 0000-0002-8261-2523 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1002_ett_4454 crossref_primary_10_1002_ett_4454 wiley_primary_10_1002_ett_4454_ETT4454 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 2022-05-00 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Transactions on emerging telecommunications technologies |
| PublicationYear | 2022 |
| References | 2021; 69 2019; 7 2004; 22 2017; 6 2019; 13 2020; 14 2020; 77 2018; 67 2018; 66 2018; 7 2013; 15 2018; 4 2009; 97 2021 2019; 68 2013; 31 2020; 27 2005; 4 1999; 12 2020; 69 2018; 30 2020; 24 2016 2020; 22 2014; 52 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 Goodfellow I. (e_1_2_7_32_1) 2016 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_20_1 |
| References_xml | – volume: 66 start-page: 573 issue: 3 year: 2018 end-page: 588 article-title: Optimal energy‐efficient source and relay precoder design for cooperative MIMO‐AF systems publication-title: IEEE Trans Signal Process – volume: 22 start-page: 1251 issue: 2 year: 2020 end-page: 1275 article-title: Machine learning for resource management in cellular and IoT networks: potentials, current solutions, and open challenges publication-title: IEEE Commun Surv Tutor – volume: 67 start-page: 4910 issue: 6 year: 2018 end-page: 4924 article-title: Energy efficiency for SWIPT in MIMO two‐way amplify‐and‐forward relay networks publication-title: IEEE Trans Veh Technol – volume: 4 start-page: 648 issue: 4 year: 2018 end-page: 664 article-title: A very brief introduction to machine learning with applications to communication systems publication-title: IEEE Trans Cognit Commun Netw – volume: 24 start-page: 2518 issue: 11 year: 2020 end-page: 2521 article-title: Deep learning‐based precoder design in MIMO systems with finite‐alphabet inputs publication-title: IEEE Commun Lett – volume: 52 start-page: 186 issue: 2 year: 2014 end-page: 195 article-title: Massive MIMO for next generation wireless systems publication-title: IEEE Commun Mag – year: 2021 article-title: Joint relay and channel selection in relay aided anti jamming system: a reinforcement learning approach publication-title: Trans Emerg Telecommun Technol – volume: 6 start-page: 646 issue: 5 year: 2017 end-page: 649 article-title: Energy efficient precoder design for non‐regenerative MIMO‐CRN publication-title: IEEE Wirel Commun Lett – volume: 7 start-page: 114 issue: 1 year: 2018 end-page: 117 article-title: Power of deep learning for channel estimation and signal detection in OFDM systems publication-title: IEEE Wirel Commun Lett – year: 2021 article-title: Spectrum sensing in cognitive radio: a deep learning based model publication-title: Trans Emerg Telecommun Technol – volume: 97 start-page: 894 issue: 5 year: 2009 end-page: 914 article-title: Breaking spectrum gridlock with cognitive radios: an information theoretic perspective publication-title: Proc IEEE – year: 2016 – volume: 31 start-page: 916 issue: 5 year: 2013 end-page: 925 article-title: Power minimization in MIMO cognitive networks using beamforming games publication-title: IEEE J Select Areas Commun – volume: 27 start-page: 214 issue: 1 year: 2020 end-page: 222 article-title: Deep learning for physical‐layer 5G wireless techniques: opportunities, challenges and solutions publication-title: IEEE Wirel Commun – volume: 15 start-page: 1136 year: 2013 end-page: 1159 article-title: A survey on machine‐learning techniques in cognitive radios publication-title: IEEE Commun Surv Tutor – volume: 69 start-page: 3465 issue: 3 year: 2020 end-page: 3469 article-title: Deep artificial noise: deep learning‐based precoding optimization for artificial noise scheme publication-title: IEEE Trans Veh Technol – volume: 14 start-page: 3414 issue: 3 year: 2020 end-page: 3417 article-title: Deep learning‐based MIMO‐NOMA with imperfect SIC decoding publication-title: IEEE Syst J – volume: 30 start-page: 122 year: 2018 end-page: 131 article-title: Joint source and relay precoder design for MIMO‐CRN publication-title: Phys Commun – volume: 13 start-page: 2226 issue: 15 year: 2019 end-page: 2234 article-title: Joint source and relay precoder design for energy‐efficient MIMO‐cognitive relay networks publication-title: IET Commun – volume: 69 start-page: 4476 issue: 7 year: 2021 end-page: 4488 article-title: Multi‐objective DNN‐based precoder for MIMO communications publication-title: IEEE Trans Commun – volume: 12 start-page: 145 issue: 1 year: 1999 end-page: 151 article-title: On the momentum term in gradient descent learning algorithms neural networks publication-title: J Int Neural Netw Soc – volume: 7 start-page: 137184 year: 2019 end-page: 137206 article-title: Machine learning for 5G/B5G mobile and wireless communications: potential, limitations, and future directions publication-title: IEEE Access – year: 2021 article-title: Deep learning based power optimizing for NOMA based relay aided D2D transmissions publication-title: IEEE Trans Cognit Commun Netw – year: 2021 article-title: Antenna selection in nonorthogonal multiple access multiple input multiple output systems aided by machine learning publication-title: Trans Emerg Telecommun Technol – volume: 68 start-page: 3027 issue: 3 year: 2019 end-page: 3032 article-title: Deep‐learning‐based millimeter‐wave massive MIMO for hybrid precoding publication-title: IEEE Trans Veh Technol – volume: 69 start-page: 552 issue: 1 year: 2020 end-page: 563 article-title: Hybrid precoding for multiuser millimeter wave massive MIMO systems: a deep learning approach publication-title: IEEE Trans Veh Technol – volume: 4 start-page: 757 issue: 2 year: 2005 end-page: 764 article-title: MIMO transmission over a time‐varying channel using SVD publication-title: IEEE Trans Wirel Commun – year: 2021 article-title: Machine learning for cooperative spectrum sensing and sharing: a survey publication-title: Trans Emerg Telecommun Technol – volume: 27 start-page: 133 issue: 4 year: 2020 end-page: 139 article-title: Deep learning for wireless communications: an emerging interdisciplinary paradigm publication-title: IEEE Wirel Commun – volume: 22 start-page: 1206 issue: 7 year: 2004 end-page: 1219 article-title: On the throughput enhancement of the downstream channel in cellular radio networks through multihop relaying publication-title: IEEE J Select Areas Commun – volume: 77 start-page: 653 year: 2020 end-page: 710 article-title: Momentum and stochastic momentum for stochastic Gradient, Newton, proximal point and subspace descent methods publication-title: Comput Optim Appl – ident: e_1_2_7_4_1 doi: 10.1109/MWC.001.1900491 – ident: e_1_2_7_20_1 doi: 10.1109/TVT.2019.2893928 – ident: e_1_2_7_30_1 doi: 10.1109/DYSPAN.2007.14 – ident: e_1_2_7_8_1 doi: 10.1109/JPROC.2009.2015717 – ident: e_1_2_7_22_1 doi: 10.1109/LWC.2017.2757490 – ident: e_1_2_7_27_1 doi: 10.1002/ett.4243 – ident: e_1_2_7_7_1 doi: 10.1109/TCCN.2018.2881442 – ident: e_1_2_7_31_1 doi: 10.1109/TWC.2004.840199 – ident: e_1_2_7_33_1 doi: 10.1016/S0893-6080(98)00116-6 – ident: e_1_2_7_3_1 – ident: e_1_2_7_19_1 doi: 10.1109/TVT.2019.2951501 – ident: e_1_2_7_5_1 doi: 10.1109/COMST.2020.2964534 – ident: e_1_2_7_34_1 doi: 10.1007/s10589-020-00220-z – ident: e_1_2_7_17_1 doi: 10.1109/JSYST.2019.2937463 – ident: e_1_2_7_28_1 doi: 10.1109/TCOMM.2021.3071536 – ident: e_1_2_7_15_1 doi: 10.1016/j.phycom.2018.08.002 – ident: e_1_2_7_18_1 doi: 10.1109/TCCN.2021.3049475 – ident: e_1_2_7_6_1 doi: 10.1109/MWC.2019.1900027 – ident: e_1_2_7_14_1 doi: 10.1109/LWC.2017.2726533 – ident: e_1_2_7_25_1 doi: 10.1002/ett.4352 – ident: e_1_2_7_29_1 doi: 10.1109/SURV.2012.100412.00017 – ident: e_1_2_7_16_1 doi: 10.1049/iet-com.2018.5447 – ident: e_1_2_7_13_1 doi: 10.1109/TSP.2017.2770093 – ident: e_1_2_7_26_1 doi: 10.1002/ett.4388 – ident: e_1_2_7_2_1 doi: 10.1109/ACCESS.2019.2942390 – ident: e_1_2_7_9_1 doi: 10.1109/JSAC.2004.829340 – ident: e_1_2_7_21_1 doi: 10.1002/ett.4283 – ident: e_1_2_7_11_1 doi: 10.1109/JSAC.2013.130510 – ident: e_1_2_7_23_1 doi: 10.1109/TVT.2020.2965959 – ident: e_1_2_7_10_1 doi: 10.1109/MCOM.2014.6736761 – ident: e_1_2_7_12_1 doi: 10.1109/TVT.2018.2819682 – volume-title: Deep Learning year: 2016 ident: e_1_2_7_32_1 – ident: e_1_2_7_24_1 doi: 10.1109/LCOMM.2020.3011978 |
| SSID | ssj0000752548 |
| Score | 2.2336597 |
| Snippet | This article studies the problem of designing energy‐efficient joint precoder at source and relay for multiple‐input multiple‐output cognitive relay networks... |
| SourceID | crossref wiley |
| SourceType | Enrichment Source Index Database Publisher |
| Title | Data‐driven approach to design energy‐efficient joint precoders at source and relay using deep learning in MIMO‐CRNs |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.4454 |
| Volume | 33 |
| WOSCitedRecordID | wos000753249900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2161-3915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000752548 issn: 2161-3915 databaseCode: DRFUL dateStart: 20120101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEIAXbT3owbdYX6wgeopN092kOUofKLRVSiu9hX2WiqSljYKe_An-Rn-JO5u0VlAQvCSXyRJ2dnd2hplvEDoT0vVDppUjmVEDYZw7XPieY4y5pEJUdGg7z903g3a70u-Hd1lWJdTCpHyIecANdoY9r2GDMz4tfkFDVZJcEkLJMsp7ZtmSHMrXOo1ecx5hMcbQeD-2JV0Jgixhic7os65XnH3-zR4t3k-tgWls_OfXNtF6dq3EV-k62EJLKt5GawuwwR30WmMJ-3h7lxM44PAMJo6TEZY2jQMrWwdoRJTlShhzhB9GQ_Mcg9sMGc-YJTgN92MWSwyFMC8YUucHZgw1xlkPigEexrh107o1Y1U77eku6jXq3eq1k3VecAQQ4BytGS9JVVGeJ5W5E_kBJ4oEIQsUl9TnRrsCPBvOqdZUukpT6mtJyyEDRJ4u76FcPIrVPsI68AVAv7hxhYky7ppLtKgQJkImWVD2CuhiNv-RyLDk0B3jMUqByl5kZjOC2Syg07nkOEVx_CBzbhXzq0BU73bhffBXwUO06kHFg81xPEK5ZPKkjtGKeE6G08lJtuY-Ad5B4Ms |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEIAHrYJ68C2-XUH0FG3T3aTBk6hFsa0iVbyFfUpF0lKjoCd_gr_RX-LOJqkKCoKX5DJZws7uzs4w8w3AllTlIOJGe4pbNVAuhCdk4HvWmCsmZc1ErvPcdSNstWo3N9HFEOwXtTAZH2IQcMOd4c5r3OAYkN77pIbqNN2llNFhGKF2FbESjBxd1q8agxCLtYbW_XE96SoYZYkqrMDPlv294vNvBunrBdVZmPrUv_5tGibziyU5yFbCDAzpZBYmvuAG5-DliKf8_fVN9fGIIwVOnKRdolwiB9GuEtCKaEeWsAaJ3HU79tlDxxlznglPSRbwJzxRBEthngkmz9_aMXSP5F0obkknIc3T5rkd6_Cy9TAPV_Xj9uGJl_de8CQy4DxjuKgoXdO-r7S9FQWhoJqGEQ-1UCwQVr8SfRshmDFMlbVhLDCKVSOOkDxTXYBS0k30IhATBhKxX8I6w1Rbh61MjaxRLiOueFj1l2CnUEAsczA59se4jzOksh_b2YxxNpdgcyDZy2AcP8hsO838KhAft9v4Xv6r4AaMnbSbjbhx2jpbgXEf6x9cxuMqlNL-o16DUfmUdh766_kC_ABG_OS7 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEIAHtSJ68C3WZwTR09p2m-wDT9IHirWKtOJtyVMqsi3tKujJn-Bv9JeYZHergoLgZfcyG5ZMkskMM98A7HNR9kKqpCOoVgOmjDmMe66jjbkgnAcqtJ3nblp-ux3c3oZXE3Cc18KkfIhxwM3sDHtemw0uB0KVPqmhMkmOMCZ4EgqYhJ7elYX6dbPbGodYtDXU7o_tSVcxUZawQnL8bNkt5Z9_M0hfL6jWwjQX_vVvizCfXSzRSboSlmBCxssw9wU3uAIvdZrQ99c3MTRHHMpx4ijpI2ETOZC0lYBaRFqyhDZI6L7f08-BcZxNzjOiCUoD_ojGAplSmGdkkufv9BhygLIuFHeoF6OLs4tLPVbtuj1ahW6z0amdOlnvBYcbBpyjFGUVIQPpukLqW5HnMyyxH1JfMkE8pvXLjW_DGFGKiLJUhHhKkGpIDSRPVddgKu7Hch2Q8j1usF9MO8NYaoetjBUPMOUhFdSvukU4zBUQ8QxMbvpjPEQpUtmN9GxGZjaLsDeWHKQwjh9kDqxmfhWIGp2OeW_8VXAXZq7qzah11j7fhFnXlD_YhMctmEqGj3IbpvlT0hsNd7L19wH8suQ2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data%E2%80%90driven+approach+to+design+energy%E2%80%90efficient+joint+precoders+at+source+and+relay+using+deep+learning+in+MIMO%E2%80%90CRNs&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Sahu%2C+Deepak&rft.au=Maurya%2C+Shikha&rft.au=Bansal%2C+Matadeen&rft.au=Kumar%2C+Dinesh&rft.date=2022-05-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=33&rft.issue=5&rft_id=info:doi/10.1002%2Fett.4454&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ett_4454 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |