A Parallelization Algorithm of Singular Value Decomposition

Matrix factorization algorithm is one of the recommendable algorithms. In order to tackle the inefficiencies of the traditional matrix factorization algorithm like the slow training time and the insufficient computing resource for the mass data, a parallelization algorithm of singular value decompos...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 1865; číslo 4; s. 42004
Hlavní autoři: Duan, Jianfeng, Cun, Xian’e
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.04.2021
Témata:
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Matrix factorization algorithm is one of the recommendable algorithms. In order to tackle the inefficiencies of the traditional matrix factorization algorithm like the slow training time and the insufficient computing resource for the mass data, a parallelization algorithm of singular value decomposition (SVD) under the Spark framework is proposed to perform SVD, standardization, and dimensionality reduction for the user-rating matrix, and obtain the user-feature matrix and project-feature matrix. The recommendation model is obtained by determining the prediction rating. MovieLens data show that this algorithm can significantly shorten the training time of the model, improve the running efficiency of the recommendation algorithms for the mass data, and improve the algorithm accuracy.
Bibliografie:ObjectType-Conference Proceeding-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1865/4/042004