Remora optimization algorithm-based adaptive fusion via ant colony optimization for traveling salesman problem
The traditional ant colony optimization (ACO) is easy to fall into local optimal when solving large-scale traveling salesman problem (TSP), and the convergence speed is slow. In order to enhance the local search ability of ACO, speed up the efficiency of ACO and avoid the premature problem, this pap...
Uloženo v:
| Vydáno v: | Computer Science and Information Systems Ročník 21; číslo 4; s. 1651 - 1672 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.09.2024
|
| ISSN: | 1820-0214, 2406-1018 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The traditional ant colony optimization (ACO) is easy to fall into local optimal when solving large-scale traveling salesman problem (TSP), and the convergence speed is slow. In order to enhance the local search ability of ACO, speed up the efficiency of ACO and avoid the premature problem, this paper proposes a novel remora optimization algorithm-based adaptive fusion via ant colony optimization for solving TSP. Firstly, an improved K-means clustering method is used to obtain the best clustering results and the optimal solutions of each class quickly by adaptive clustering strategy based on the maximum and minimum distance and class density. By using an improved Remora optimization algorithm, adjacent classes are fused to effectively improve the accuracy of the initial solution. In addition, the initial solution is optimized by the k-opt strategy. Finally, the random recombination strategy is used to recombine the pheromone and random excitation to make the algorithm jump out of the local optimal as far as possible and improve the accuracy of the algorithm. The experimental results show that the proposed algorithm not only guarantees the accuracy of solution, but also improves the stability when solving large-scale TSP. |
|---|---|
| AbstractList | The traditional ant colony optimization (ACO) is easy to fall into local optimal when solving large-scale traveling salesman problem (TSP), and the convergence speed is slow. In order to enhance the local search ability of ACO, speed up the efficiency of ACO and avoid the premature problem, this paper proposes a novel remora optimization algorithm-based adaptive fusion via ant colony optimization for solving TSP. Firstly, an improved K-means clustering method is used to obtain the best clustering results and the optimal solutions of each class quickly by adaptive clustering strategy based on the maximum and minimum distance and class density. By using an improved Remora optimization algorithm, adjacent classes are fused to effectively improve the accuracy of the initial solution. In addition, the initial solution is optimized by the k-opt strategy. Finally, the random recombination strategy is used to recombine the pheromone and random excitation to make the algorithm jump out of the local optimal as far as possible and improve the accuracy of the algorithm. The experimental results show that the proposed algorithm not only guarantees the accuracy of solution, but also improves the stability when solving large-scale TSP. |
| Author | Piao, Lin |
| Author_xml | – sequence: 1 givenname: Lin surname: Piao fullname: Piao, Lin organization: Department of Education, Liaoning National Normal College, Huanggu District, Shenyang, China |
| BookMark | eNp1kEtLAzEcxINUsNZePecLbM1rHzlK8VEoKFbPyz_ZpAZ2kyVZF-qnd6teKngahuE3MHOJZj54g9A1JSvGZHWz3m12TBBOBcnZ8xmaT6bIKKHVDM1pxUhGGBUXaJmSU0SIknMhijnyL6YLEXDoB9e5Txhc8BjafYhueO8yBck0GBqY4tFg-5GO-egAgx-wDm3wh1PWhoiHCKNpnd_jBK1JHXjcx6Ba012hcwttMstfXaC3-7vX9WO2fXrYrG-3maZS9BlUxuYVlYXS2irCOVWm4KVQooCSslyKRjdWS2kameeKlpoYBYQIzUByQ_gCrX56dQwpRWPrProO4qGmpD4eVp8eNgHiD6Dd8L1oGuPa_7AvSV90Tw |
| CitedBy_id | crossref_primary_10_1088_1402_4896_ade7c3 |
| Cites_doi | 10.1093/jigpal/jzac028 10.1504/IJCSE.2019.096970 10.1007/s12530-023-09495-z 10.3390/e22080884 10.3926/jiem.3287 10.1016/j.asoc.2022.109339 10.3390/electronics12071681 10.1007/s42235-022-00175-3 10.1007/s40747-022-00932-1 10.31181/dmame0318062022m 10.1016/j.asoc.2021.107439 10.1007/s11831-017-9247-y 10.7717/peerj-cs.1609 10.1093/jcde/qwac039 10.1088/1742-6596/1442/1/012035 10.1016/j.procs.2022.01.084 10.1016/j.asoc.2021.107298 10.1109/ACCESS.2021.3128433 10.1504/IJCSE.2019.10017870 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.2298/CSIS240314052P |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2406-1018 |
| EndPage | 1672 |
| ExternalDocumentID | 10_2298_CSIS240314052P |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
| ID | FETCH-LOGICAL-c194p-a8ef58196bccfb0331be6374b46a712594dcdfc99ed955b17c0eba004c2a93e03 |
| ISSN | 1820-0214 |
| IngestDate | Sat Nov 29 03:58:37 EST 2025 Tue Nov 18 22:19:15 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c194p-a8ef58196bccfb0331be6374b46a712594dcdfc99ed955b17c0eba004c2a93e03 |
| OpenAccessLink | https://doi.org/10.2298/csis240314052p |
| PageCount | 22 |
| ParticipantIDs | crossref_primary_10_2298_CSIS240314052P crossref_citationtrail_10_2298_CSIS240314052P |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer Science and Information Systems |
| PublicationYear | 2024 |
| References | ref13 ref12 ref23 ref15 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref7 doi: 10.1093/jigpal/jzac028 – ident: ref4 – ident: ref16 doi: 10.1504/IJCSE.2019.096970 – ident: ref19 doi: 10.1007/s12530-023-09495-z – ident: ref5 doi: 10.3390/e22080884 – ident: ref20 – ident: ref15 doi: 10.3926/jiem.3287 – ident: ref8 doi: 10.1016/j.asoc.2022.109339 – ident: ref12 doi: 10.3390/electronics12071681 – ident: ref10 doi: 10.1007/s42235-022-00175-3 – ident: ref23 doi: 10.1007/s40747-022-00932-1 – ident: ref22 doi: 10.31181/dmame0318062022m – ident: ref2 doi: 10.1016/j.asoc.2021.107439 – ident: ref1 doi: 10.1007/s11831-017-9247-y – ident: ref6 doi: 10.7717/peerj-cs.1609 – ident: ref3 doi: 10.1093/jcde/qwac039 – ident: ref9 – ident: ref14 doi: 10.1088/1742-6596/1442/1/012035 – ident: ref21 doi: 10.1016/j.procs.2022.01.084 – ident: ref11 doi: 10.1016/j.asoc.2021.107298 – ident: ref13 doi: 10.1109/ACCESS.2021.3128433 – ident: ref17 – ident: ref18 doi: 10.1504/IJCSE.2019.10017870 |
| SSID | ssib044733446 |
| Score | 2.312633 |
| Snippet | The traditional ant colony optimization (ACO) is easy to fall into local optimal when solving large-scale traveling salesman problem (TSP), and the convergence... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 1651 |
| Title | Remora optimization algorithm-based adaptive fusion via ant colony optimization for traveling salesman problem |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2406-1018 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044733446 issn: 1820-0214 databaseCode: M~E dateStart: 20040101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoELogJEC1Q-IHGILBLbSdZHVBUViVYVLai3le04sNI2u9qXyoXfzkxsp8kKpHLgEiWWbSn5Ps-MnXkQ8lZYXtSOSya0rpkURjBTw7oCVVTLKs0q3rr8f_tcnp-Pr6_VxWi0ibEw21nZNOPbW7X4r1BDG4CNobP_AHc3KTTAPYAOV4AdrvcC_gv6zupkDrLgJgRZJnr2fb6crn_cMNRaVaIrvfAJvzd4WpZs29CsdYIprJufw7GtHyIWKWoD11egUFZ47h8q0fSN21ghohMY3te4i48cpEdHcTzV83Au0D98AEijd1WUl2BAMEy75tVJ24Y2AsNEYH0hy7MemWRPYmZFSDjrwqOv5LMr2TlXGK1wfPnpEjMIwrYw5xd3Oiz-t99RbZ3DIWx1cIbJcPwD8pCXuUJPwLNfJ1EMSVkKIX1cWnw9n-4Tp3g_nKJnzvTskqun5EnYUNAPngj7ZOSaZ6TxJKB9IOkOCWgkAfUkoEACCiSgngTDsYAh7UhAIwloIMFz8vXjydXxKQuVNZjNlFwwPXZ1DrZgYaytTSpEZlwhSmlkoUsweZWsbFVbpVyl8txkpU2d0bDILNdKuFS8IHvNvHEvCeWpAZMzg84advo5LHlbpNwKge4dNi0PCIsfaGJD2nmsfjKb_BmTA_Ku67_wCVf-0vPw3j1fkcd35H1N9tbLjXtDHtnterpaHrXg_wb4HHpq |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remora+optimization+algorithm-based+adaptive+fusion+via+ant+colony+optimization+for+traveling+salesman+problem&rft.jtitle=Computer+Science+and+Information+Systems&rft.au=Piao%2C+Lin&rft.date=2024-09-01&rft.issn=1820-0214&rft.eissn=2406-1018&rft.volume=21&rft.issue=4&rft.spage=1651&rft.epage=1672&rft_id=info:doi/10.2298%2FCSIS240314052P&rft.externalDBID=n%2Fa&rft.externalDocID=10_2298_CSIS240314052P |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1820-0214&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1820-0214&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1820-0214&client=summon |