Remora optimization algorithm-based adaptive fusion via ant colony optimization for traveling salesman problem

The traditional ant colony optimization (ACO) is easy to fall into local optimal when solving large-scale traveling salesman problem (TSP), and the convergence speed is slow. In order to enhance the local search ability of ACO, speed up the efficiency of ACO and avoid the premature problem, this pap...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer Science and Information Systems Ročník 21; číslo 4; s. 1651 - 1672
Hlavní autor: Piao, Lin
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.09.2024
ISSN:1820-0214, 2406-1018
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The traditional ant colony optimization (ACO) is easy to fall into local optimal when solving large-scale traveling salesman problem (TSP), and the convergence speed is slow. In order to enhance the local search ability of ACO, speed up the efficiency of ACO and avoid the premature problem, this paper proposes a novel remora optimization algorithm-based adaptive fusion via ant colony optimization for solving TSP. Firstly, an improved K-means clustering method is used to obtain the best clustering results and the optimal solutions of each class quickly by adaptive clustering strategy based on the maximum and minimum distance and class density. By using an improved Remora optimization algorithm, adjacent classes are fused to effectively improve the accuracy of the initial solution. In addition, the initial solution is optimized by the k-opt strategy. Finally, the random recombination strategy is used to recombine the pheromone and random excitation to make the algorithm jump out of the local optimal as far as possible and improve the accuracy of the algorithm. The experimental results show that the proposed algorithm not only guarantees the accuracy of solution, but also improves the stability when solving large-scale TSP.
AbstractList The traditional ant colony optimization (ACO) is easy to fall into local optimal when solving large-scale traveling salesman problem (TSP), and the convergence speed is slow. In order to enhance the local search ability of ACO, speed up the efficiency of ACO and avoid the premature problem, this paper proposes a novel remora optimization algorithm-based adaptive fusion via ant colony optimization for solving TSP. Firstly, an improved K-means clustering method is used to obtain the best clustering results and the optimal solutions of each class quickly by adaptive clustering strategy based on the maximum and minimum distance and class density. By using an improved Remora optimization algorithm, adjacent classes are fused to effectively improve the accuracy of the initial solution. In addition, the initial solution is optimized by the k-opt strategy. Finally, the random recombination strategy is used to recombine the pheromone and random excitation to make the algorithm jump out of the local optimal as far as possible and improve the accuracy of the algorithm. The experimental results show that the proposed algorithm not only guarantees the accuracy of solution, but also improves the stability when solving large-scale TSP.
Author Piao, Lin
Author_xml – sequence: 1
  givenname: Lin
  surname: Piao
  fullname: Piao, Lin
  organization: Department of Education, Liaoning National Normal College, Huanggu District, Shenyang, China
BookMark eNp1kEtLAzEcxINUsNZePecLbM1rHzlK8VEoKFbPyz_ZpAZ2kyVZF-qnd6teKngahuE3MHOJZj54g9A1JSvGZHWz3m12TBBOBcnZ8xmaT6bIKKHVDM1pxUhGGBUXaJmSU0SIknMhijnyL6YLEXDoB9e5Txhc8BjafYhueO8yBck0GBqY4tFg-5GO-egAgx-wDm3wh1PWhoiHCKNpnd_jBK1JHXjcx6Ba012hcwttMstfXaC3-7vX9WO2fXrYrG-3maZS9BlUxuYVlYXS2irCOVWm4KVQooCSslyKRjdWS2kameeKlpoYBYQIzUByQ_gCrX56dQwpRWPrProO4qGmpD4eVp8eNgHiD6Dd8L1oGuPa_7AvSV90Tw
CitedBy_id crossref_primary_10_1088_1402_4896_ade7c3
Cites_doi 10.1093/jigpal/jzac028
10.1504/IJCSE.2019.096970
10.1007/s12530-023-09495-z
10.3390/e22080884
10.3926/jiem.3287
10.1016/j.asoc.2022.109339
10.3390/electronics12071681
10.1007/s42235-022-00175-3
10.1007/s40747-022-00932-1
10.31181/dmame0318062022m
10.1016/j.asoc.2021.107439
10.1007/s11831-017-9247-y
10.7717/peerj-cs.1609
10.1093/jcde/qwac039
10.1088/1742-6596/1442/1/012035
10.1016/j.procs.2022.01.084
10.1016/j.asoc.2021.107298
10.1109/ACCESS.2021.3128433
10.1504/IJCSE.2019.10017870
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.2298/CSIS240314052P
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2406-1018
EndPage 1672
ExternalDocumentID 10_2298_CSIS240314052P
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ID FETCH-LOGICAL-c194p-a8ef58196bccfb0331be6374b46a712594dcdfc99ed955b17c0eba004c2a93e03
ISSN 1820-0214
IngestDate Sat Nov 29 03:58:37 EST 2025
Tue Nov 18 22:19:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c194p-a8ef58196bccfb0331be6374b46a712594dcdfc99ed955b17c0eba004c2a93e03
OpenAccessLink https://doi.org/10.2298/csis240314052p
PageCount 22
ParticipantIDs crossref_primary_10_2298_CSIS240314052P
crossref_citationtrail_10_2298_CSIS240314052P
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer Science and Information Systems
PublicationYear 2024
References ref13
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref7
  doi: 10.1093/jigpal/jzac028
– ident: ref4
– ident: ref16
  doi: 10.1504/IJCSE.2019.096970
– ident: ref19
  doi: 10.1007/s12530-023-09495-z
– ident: ref5
  doi: 10.3390/e22080884
– ident: ref20
– ident: ref15
  doi: 10.3926/jiem.3287
– ident: ref8
  doi: 10.1016/j.asoc.2022.109339
– ident: ref12
  doi: 10.3390/electronics12071681
– ident: ref10
  doi: 10.1007/s42235-022-00175-3
– ident: ref23
  doi: 10.1007/s40747-022-00932-1
– ident: ref22
  doi: 10.31181/dmame0318062022m
– ident: ref2
  doi: 10.1016/j.asoc.2021.107439
– ident: ref1
  doi: 10.1007/s11831-017-9247-y
– ident: ref6
  doi: 10.7717/peerj-cs.1609
– ident: ref3
  doi: 10.1093/jcde/qwac039
– ident: ref9
– ident: ref14
  doi: 10.1088/1742-6596/1442/1/012035
– ident: ref21
  doi: 10.1016/j.procs.2022.01.084
– ident: ref11
  doi: 10.1016/j.asoc.2021.107298
– ident: ref13
  doi: 10.1109/ACCESS.2021.3128433
– ident: ref17
– ident: ref18
  doi: 10.1504/IJCSE.2019.10017870
SSID ssib044733446
Score 2.312633
Snippet The traditional ant colony optimization (ACO) is easy to fall into local optimal when solving large-scale traveling salesman problem (TSP), and the convergence...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 1651
Title Remora optimization algorithm-based adaptive fusion via ant colony optimization for traveling salesman problem
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2406-1018
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044733446
  issn: 1820-0214
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoELogJEC1Q-IHGILBLbSdZHVBUViVYVLai3le04sNI2u9qXyoXfzkxsp8kKpHLgEiWWbSn5Ps-MnXkQ8lZYXtSOSya0rpkURjBTw7oCVVTLKs0q3rr8f_tcnp-Pr6_VxWi0ibEw21nZNOPbW7X4r1BDG4CNobP_AHc3KTTAPYAOV4AdrvcC_gv6zupkDrLgJgRZJnr2fb6crn_cMNRaVaIrvfAJvzd4WpZs29CsdYIprJufw7GtHyIWKWoD11egUFZ47h8q0fSN21ghohMY3te4i48cpEdHcTzV83Au0D98AEijd1WUl2BAMEy75tVJ24Y2AsNEYH0hy7MemWRPYmZFSDjrwqOv5LMr2TlXGK1wfPnpEjMIwrYw5xd3Oiz-t99RbZ3DIWx1cIbJcPwD8pCXuUJPwLNfJ1EMSVkKIX1cWnw9n-4Tp3g_nKJnzvTskqun5EnYUNAPngj7ZOSaZ6TxJKB9IOkOCWgkAfUkoEACCiSgngTDsYAh7UhAIwloIMFz8vXjydXxKQuVNZjNlFwwPXZ1DrZgYaytTSpEZlwhSmlkoUsweZWsbFVbpVyl8txkpU2d0bDILNdKuFS8IHvNvHEvCeWpAZMzg84advo5LHlbpNwKge4dNi0PCIsfaGJD2nmsfjKb_BmTA_Ku67_wCVf-0vPw3j1fkcd35H1N9tbLjXtDHtnterpaHrXg_wb4HHpq
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remora+optimization+algorithm-based+adaptive+fusion+via+ant+colony+optimization+for+traveling+salesman+problem&rft.jtitle=Computer+Science+and+Information+Systems&rft.au=Piao%2C+Lin&rft.date=2024-09-01&rft.issn=1820-0214&rft.eissn=2406-1018&rft.volume=21&rft.issue=4&rft.spage=1651&rft.epage=1672&rft_id=info:doi/10.2298%2FCSIS240314052P&rft.externalDBID=n%2Fa&rft.externalDocID=10_2298_CSIS240314052P
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1820-0214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1820-0214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1820-0214&client=summon