HYBRID SYSTEM BASED FUZZY-PID CONTROL SCHEMES FOR UNPREDICTABLE PROCESS

In general, the primary aim of polymerization industry is to enhance the process operation in order to obtain high quality and purity product. However, a sudden and large amount of heat will be released rapidly during the mixing process of two reactants, i.e. phenol and formalin due to its exothermi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICTACT journal on soft computing Jg. 2; H. 1; S. 211 - 217
Hauptverfasser: M K, Tan, C S X, Loh, K T K, Teo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: ICT Academy of Tamil Nadu 01.07.2011
Schlagworte:
ISSN:0976-6561, 2229-6956
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In general, the primary aim of polymerization industry is to enhance the process operation in order to obtain high quality and purity product. However, a sudden and large amount of heat will be released rapidly during the mixing process of two reactants, i.e. phenol and formalin due to its exothermic behavior. The unpredictable heat will cause deviation of process temperature and hence affect the quality of the product. Therefore, it is vital to control the process temperature during the polymerization. In the modern industry, fuzzy logic is commonly used to auto-tune PID controller to control the process temperature. However, this method needs an experienced operator to fine tune the fuzzy membership function and universe of discourse via trial and error approach. Hence, the setting of fuzzy inference system might not be accurate due to the human errors. Besides that, control of the process can be challenging due to the rapid changes in the plant parameters which will increase the process complexity. This paper proposes an optimization scheme using hybrid of Q-learning (QL) and genetic algorithm (GA) to optimize the fuzzy membership function in order to allow the conventional fuzzy-PID controller to control the process temperature more effectively. The performances of the proposed optimization scheme are compared with the existing fuzzy-PID scheme. The results show that the proposed optimization scheme is able to control the process temperature more effectively even if disturbance is introduced.
AbstractList In general, the primary aim of polymerization industry is to enhance the process operation in order to obtain high quality and purity product. However, a sudden and large amount of heat will be released rapidly during the mixing process of two reactants, i.e. phenol and formalin due to its exothermic behavior. The unpredictable heat will cause deviation of process temperature and hence affect the quality of the product. Therefore, it is vital to control the process temperature during the polymerization. In the modern industry, fuzzy logic is commonly used to auto-tune PID controller to control the process temperature. However, this method needs an experienced operator to fine tune the fuzzy membership function and universe of discourse via trial and error approach. Hence, the setting of fuzzy inference system might not be accurate due to the human errors. Besides that, control of the process can be challenging due to the rapid changes in the plant parameters which will increase the process complexity. This paper proposes an optimization scheme using hybrid of Q-learning (QL) and genetic algorithm (GA) to optimize the fuzzy membership function in order to allow the conventional fuzzy-PID controller to control the process temperature more effectively. The performances of the proposed optimization scheme are compared with the existing fuzzy-PID scheme. The results show that the proposed optimization scheme is able to control the process temperature more effectively even if disturbance is introduced.
Author M K, Tan
C S X, Loh
K T K, Teo
Author_xml – sequence: 1
  givenname: Tan
  surname: M K
  fullname: M K, Tan
– sequence: 2
  givenname: Loh
  surname: C S X
  fullname: C S X, Loh
– sequence: 3
  givenname: Teo
  surname: K T K
  fullname: K T K, Teo
BookMark eNp1kM1ugkAURieNTWqt6255AXR-mBlmqTgqCRUDuNDNZBiGBmOlATZ9-4I2XTTp6t773XxncZ7B6FpfLQCvCM4wEojPq3NrZhgiNIOQkAcwxhgLlwnKRmAMBWcuoww9gWnbniGEiHqYMjEGm-1xmYQrJz2mmXxzlotUrpz14XQ6uvs-DuJdlsSRkwZb-SZTZx0nzmG3T-QqDLLFMpLOPokDmaYv4LHUl9ZOf-YEHNYyC7ZuFG_CYBG5BglCXG6FgLwsjNFcQ14wSguoC1P0M--vkmDPMoP8_omsn2NRIs19IgwkYlgmILxzi1qf1WdTfejmS9W6Uregbt6VbrrKXKyCwvolKzmhRntE2FxzIbQHc2Nym-O8Z83vLNPUbdvY8peHoLppVYNWNWhVg9a-Qf80TNXprqqvXaOry7-9bzoJeKQ
CitedBy_id crossref_primary_10_1016_j_eswa_2017_03_002
ContentType Journal Article
CorporateAuthor School of Engineering and Information Technology, Universiti Malaysia Sabah, Malaysia
CorporateAuthor_xml – name: School of Engineering and Information Technology, Universiti Malaysia Sabah, Malaysia
DBID AAYXX
CITATION
DOA
DOI 10.21917/ijsc.2011.0033
DatabaseName CrossRef
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2229-6956
EndPage 217
ExternalDocumentID oai_doaj_org_article_09e8f6f735ca439eba799a40bccbeb2b
10_21917_ijsc_2011_0033
GroupedDBID 5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
IPNFZ
KQ8
OK1
RIG
ID FETCH-LOGICAL-c1933-7e9907fdcca7a07d655d0adcd55dbd65f324e6c18a071e8b29f1a7839c039a783
IEDL.DBID DOA
ISSN 0976-6561
IngestDate Fri Oct 03 12:52:28 EDT 2025
Sat Nov 29 03:23:02 EST 2025
Tue Nov 18 22:08:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1933-7e9907fdcca7a07d655d0adcd55dbd65f324e6c18a071e8b29f1a7839c039a783
OpenAccessLink https://doaj.org/article/09e8f6f735ca439eba799a40bccbeb2b
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_09e8f6f735ca439eba799a40bccbeb2b
crossref_primary_10_21917_ijsc_2011_0033
crossref_citationtrail_10_21917_ijsc_2011_0033
PublicationCentury 2000
PublicationDate 2011-07-01
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-01
  day: 01
PublicationDecade 2010
PublicationTitle ICTACT journal on soft computing
PublicationYear 2011
Publisher ICT Academy of Tamil Nadu
Publisher_xml – name: ICT Academy of Tamil Nadu
SSID ssj0001542569
ssib050732379
Score 1.7658389
Snippet In general, the primary aim of polymerization industry is to enhance the process operation in order to obtain high quality and purity product. However, a...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 211
SubjectTerms Exothermic Batch Reactor
Fuzzy-PID Controller
Genetic Algorithm
Q-Learning
Thermal Control
Title HYBRID SYSTEM BASED FUZZY-PID CONTROL SCHEMES FOR UNPREDICTABLE PROCESS
URI https://doaj.org/article/09e8f6f735ca439eba799a40bccbeb2b
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 2229-6956
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0001542569
  issn: 0976-6561
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2229-6956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050732379
  issn: 0976-6561
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFG4M8eDF38bf6cGDl8rWwkqPMIaYIBAGBrgsbdcmGIMG0L_f120QPBgvnrZ13bJ8723ve9vb9xC6k4HHjWWGQIaiScVQn0jlC0K1ZYpSLUXWvu2lw7vd2ngs-lutvlxNWC4PnANX9oSp2cByVtUSgqdRkgshK57SWkFWqNzTF1jPVjIFngQkh1FWfH_K_xcG3wxy4T0eECAxfq7zQ12-Up69LnUh5-kx9iNEbSn5ZyGndYj2C66I6_k1HqEdMz9GB-s-DLi4LU_QY3viamRwPImH0TNu1OOoiVuj6XRC-jAc9rrDQa-DYyd_EMUY8j486gL0zadwWG90Itwf9EIwxCkataJh2CZFgwSigXcxwg3EEm5TsAKXHk-DajX1ZKpTWCrYssCWTKD9Guz0TU1RYX3JgRJpjwm3coZK8_e5OUdYWGPASFRWtKqwQAPGKnDab1RSlqb2Aj2sMUl0oR7umli8JZBFZCAmDsTEgej0RtkFut8c8JELZ_w-teFA3kxzitfZAPhBUvhB8pcfXP7HSa7QXv7O2JXjXqPSavFpbtCu_lrNlovbzMW-AZh-zjU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HYBRID+SYSTEM+BASED+FUZZY-PID+CONTROL+SCHEMES+FOR+UNPREDICTABLE+PROCESS&rft.jtitle=ICTACT+journal+on+soft+computing&rft.au=M+K%2C+Tan&rft.au=C+S+X%2C+Loh&rft.au=K+T+K%2C+Teo&rft.date=2011-07-01&rft.issn=0976-6561&rft.eissn=2229-6956&rft.volume=2&rft.issue=1&rft.spage=211&rft.epage=217&rft_id=info:doi/10.21917%2Fijsc.2011.0033&rft.externalDBID=n%2Fa&rft.externalDocID=10_21917_ijsc_2011_0033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0976-6561&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0976-6561&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0976-6561&client=summon