An Approach for Predicting Protein-Protein Interactions using Supervised Autoencoders

Identifying protein-protein interactions (PPIs) represents a challenging research problem in computational biology. Even though machine learning methods have significantly advanced the research in this field, current approaches struggle to accurately predict interactions for previously unseen protei...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Procedia computer science Ročník 207; s. 2023 - 2032
Hlavný autor: Albu, Alexandra-Ioana
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 2022
Predmet:
ISSN:1877-0509, 1877-0509
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Identifying protein-protein interactions (PPIs) represents a challenging research problem in computational biology. Even though machine learning methods have significantly advanced the research in this field, current approaches struggle to accurately predict interactions for previously unseen proteins. Supervised autoencoders, which are neural networks trained to simultaneously predict labels and reconstruct their inputs, have been proved to offer generalization guarantees in the linear case. Moreover, the addition of a reconstruction branch was empirically shown to improve the performance of standard neural networks classifiers on several tasks. In this paper, we introduce a two-stage sequence-based PPI prediction method based on supervised autoencoders. The proposed approach consists of initially training a denoising autoencoder on protein sequences, followed by a supervised training stage in which the model learns to both predict whether two proteins interact and to reconstruct the two proteins in the pair. An experimental analysis was performed on two public PPI data sets containing testing pairs formed using both seen and unseen protein sequences. The results show that our approach surpasses, on the two data sets, multiple machine learning classifiers proposed in the literature.
AbstractList Identifying protein-protein interactions (PPIs) represents a challenging research problem in computational biology. Even though machine learning methods have significantly advanced the research in this field, current approaches struggle to accurately predict interactions for previously unseen proteins. Supervised autoencoders, which are neural networks trained to simultaneously predict labels and reconstruct their inputs, have been proved to offer generalization guarantees in the linear case. Moreover, the addition of a reconstruction branch was empirically shown to improve the performance of standard neural networks classifiers on several tasks. In this paper, we introduce a two-stage sequence-based PPI prediction method based on supervised autoencoders. The proposed approach consists of initially training a denoising autoencoder on protein sequences, followed by a supervised training stage in which the model learns to both predict whether two proteins interact and to reconstruct the two proteins in the pair. An experimental analysis was performed on two public PPI data sets containing testing pairs formed using both seen and unseen protein sequences. The results show that our approach surpasses, on the two data sets, multiple machine learning classifiers proposed in the literature.
Author Albu, Alexandra-Ioana
Author_xml – sequence: 1
  givenname: Alexandra-Ioana
  surname: Albu
  fullname: Albu, Alexandra-Ioana
  email: alexandra.albu@ubbcluj.ro
  organization: Department of Computer Science, Babeş-Bolyai University 1, M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania
BookMark eNqFkM1OwzAMgCM0JMbYE3DpC7QkTdcmBw7VxM-kSSDBzlGaOJBpJFXSTeLtSdkOiAP4Ykv2Z9nfJZo47wCha4ILgkl9sy364FUsSlyWBeZFWZMzNCWsaXK8wHzyo75A8xi3OAVljJNmijaty9o-LZDqPTM-ZM8BtFWDdW-p9ANYl59ytnIDBJl63sVsH8eRl30P4WAj6KzdDx6c8hpCvELnRu4izE95hjb3d6_Lx3z99LBatutcEU5JvlCakZqakpiupAtTVdBR0nCqm1oZVmltagDFCVOSd42sGS0b2XRQSWYANJ0hftyrgo8xgBHKDnI8cAjS7gTBYlQktuJbkRgVCcxFUpRY-ovtg_2Q4fMf6vZIQXrrYCGIqGx6O0kLoAahvf2T_wLV6IXl
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109449
crossref_primary_10_1016_j_compbiomed_2022_106526
Cites_doi 10.1039/C7MB00188F
10.1093/bioinformatics/bth483
10.1021/acs.jcim.7b00028
10.1038/nmeth.1611
10.1093/nar/gkn159
10.1186/s12859-017-1700-2
10.1186/s12859-016-1414-x
10.1093/nar/gkn390
10.3390/e23060643
10.1186/s12859-020-03646-8
10.1073/pnas.0607879104
10.1186/s12859-016-1253-9
10.1016/j.sbi.2022.102328
10.1155/2018/4216813
10.1093/bioinformatics/btz328
10.1038/nmeth.2259
10.1021/pr100618t
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2022.09.261
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 2032
ExternalDocumentID 10_1016_j_procs_2022_09_261
S1877050922011474
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c1931-5cd8163f21fb235f44eb31793d76cf84ddf6eec918ca9b7a68327a7be4a8feed3
ISSN 1877-0509
IngestDate Sat Nov 29 06:57:52 EST 2025
Tue Nov 18 21:57:12 EST 2025
Wed May 17 00:08:21 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 68T05
protein-protein interaction prediction
supervised autoencoders
denoising autoencoders 2000 MSC: 92D20
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1931-5cd8163f21fb235f44eb31793d76cf84ddf6eec918ca9b7a68327a7be4a8feed3
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2022.09.261
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_procs_2022_09_261
crossref_primary_10_1016_j_procs_2022_09_261
elsevier_sciencedirect_doi_10_1016_j_procs_2022_09_261
PublicationCentury 2000
PublicationDate 2022
2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bengio (bib0004) 2012
Ahooye Atashin, A., Bagherzadeh, P., Ghiasi-Shirazi, K., 2016. A two-stage learning method for protein-protein interaction prediction. arXiv e-prints, arXiv–1606.
Yang, Fan, Song, Lin (bib0030) 2020; 21
Wang, You, Li, Jiang, Chen, Zhou, Wang (bib0028) 2017; 13
Casadio, Martelli, Savojardo (bib0005) 2022
Le, Patterson, White (bib0015) 2018
Martin, Roe, Faulon (bib0018) 2005; 21
Chen, Ju, Zhou, Chen, Zhang, Chang, Zaniolo, Wang (bib0006) 2019; 35
Dunham, Ganapathiraju (bib0010) 2022; 27
Du, Sun, Hu, Yao, Yan, Zhang (bib0009) 2017; 57
Guo, Yu, Wen, Li (bib0011) 2008; 36
Jarrett, van der Schaar (bib0012) 2019
Vert, Qiu, Noble (bib0025) 2007
Park, Marcotte (bib0020) 2012; 9
Kimothi, Biyani, Hogan, Davis (bib0014) 2021
Lim, Cankara, Tsai, Keskin, Nussinov, Gursoy (bib0017) 2022; 73
Pitre, North, Alamgir, Jessulat, Chan, Luo, Green, Dumontier, Dehne, Golshani (bib0021) 2008; 36
Xie, Ma (bib0029) 2019
Czibula, Albu, Bocicor, Chira (bib0007) 2021; 23
Pan, Zhang, Shen (bib0019) 2010; 9
Jha, Saha, Tanveer (bib0013) 2021
Abadi (bib0001) 2016
Li, Ilie (bib0016) 2017; 18
Shen, Zhang, Henao, Su, Carin (bib0022) 2018
Wang, You, Li, Cheng, Zhou, Zhang, Li, Jiang (bib0027) 2018
Wang, Hu (bib0026) 2021
Ding, Tang, Guo (bib0008) 2016; 17
Bellucci, Agostini, Masin, Tartaglia (bib0003) 2011; 8
Sun, Zhou, Lai, Pei (bib0024) 2017; 18
Shen, Zhang, Luo, Zhu, Yu, Chen, Li, Jiang (bib0023) 2007; 104
Bellucci (10.1016/j.procs.2022.09.261_bib0003) 2011; 8
Kimothi (10.1016/j.procs.2022.09.261_bib0014) 2021
Wang (10.1016/j.procs.2022.09.261_bib0027) 2018
Yang (10.1016/j.procs.2022.09.261_bib0030) 2020; 21
Wang (10.1016/j.procs.2022.09.261_bib0026) 2021
Bengio (10.1016/j.procs.2022.09.261_bib0004) 2012
Abadi (10.1016/j.procs.2022.09.261_bib0001) 2016
Dunham (10.1016/j.procs.2022.09.261_bib0010) 2022; 27
Lim (10.1016/j.procs.2022.09.261_bib0017) 2022; 73
Martin (10.1016/j.procs.2022.09.261_bib0018) 2005; 21
10.1016/j.procs.2022.09.261_bib0002
Wang (10.1016/j.procs.2022.09.261_bib0028) 2017; 13
Czibula (10.1016/j.procs.2022.09.261_bib0007) 2021; 23
Sun (10.1016/j.procs.2022.09.261_bib0024) 2017; 18
Xie (10.1016/j.procs.2022.09.261_bib0029) 2019
Park (10.1016/j.procs.2022.09.261_bib0020) 2012; 9
Jarrett (10.1016/j.procs.2022.09.261_bib0012) 2019
Chen (10.1016/j.procs.2022.09.261_bib0006) 2019; 35
Pan (10.1016/j.procs.2022.09.261_bib0019) 2010; 9
Guo (10.1016/j.procs.2022.09.261_bib0011) 2008; 36
Le (10.1016/j.procs.2022.09.261_bib0015) 2018
Shen (10.1016/j.procs.2022.09.261_bib0023) 2007; 104
Vert (10.1016/j.procs.2022.09.261_bib0025) 2007
Li (10.1016/j.procs.2022.09.261_bib0016) 2017; 18
Shen (10.1016/j.procs.2022.09.261_bib0022) 2018
Ding (10.1016/j.procs.2022.09.261_bib0008) 2016; 17
Casadio (10.1016/j.procs.2022.09.261_bib0005) 2022
Jha (10.1016/j.procs.2022.09.261_bib0013) 2021
Pitre (10.1016/j.procs.2022.09.261_bib0021) 2008; 36
Du (10.1016/j.procs.2022.09.261_bib0009) 2017; 57
References_xml – volume: 21
  start-page: 218
  year: 2005
  end-page: 226
  ident: bib0018
  article-title: Predicting protein–protein interactions using signature products
  publication-title: Bioinformatics
– volume: 13
  start-page: 1336
  year: 2017
  end-page: 1344
  ident: bib0028
  article-title: Predicting protein–protein interactions from protein sequences by a stacked sparse autoencoder deep neural network
  publication-title: Molecular BioSystems
– volume: 104
  start-page: 4337
  year: 2007
  end-page: 4341
  ident: bib0023
  article-title: Predicting protein–protein interactions based only on sequences information
  publication-title: Proceedings of the National Academy of Sciences
– volume: 9
  start-page: 4992
  year: 2010
  end-page: 5001
  ident: bib0019
  article-title: Large-Scale prediction of human protein- protein interactions from amino acid sequence based on latent topic features
  publication-title: Journal of proteome research
– volume: 36
  start-page: 4286
  year: 2008
  end-page: 4294
  ident: bib0021
  article-title: Global investigation of protein–protein interactions in yeast Saccharomyces cerevisiae using re-occurring short polypeptide sequences
  publication-title: Nucleic acids research
– start-page: 107
  year: 2018
  end-page: 117
  ident: bib0015
  article-title: Supervised autoencoders: improving generalization performance with unsupervised regularizers
  publication-title: Proceedings of the 32nd International Conference on Neural Information Processing Systems
– volume: 9
  start-page: 1134
  year: 2012
  end-page: 1136
  ident: bib0020
  article-title: Flaws in evaluation schemes for pair-input computational predictions
  publication-title: Nature methods
– volume: 36
  start-page: 3025
  year: 2008
  end-page: 3030
  ident: bib0011
  article-title: Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences
  publication-title: Nucleic acids research
– volume: 23
  start-page: 643
  year: 2021
  ident: bib0007
  article-title: AutoPPI: An Ensemble of Deep Autoencoders for Protein–Protein Interaction Prediction
  publication-title: Entropy
– volume: 21
  start-page: 1
  year: 2020
  end-page: 16
  ident: bib0030
  article-title: Graph-based prediction of Protein-protein interactions with attributed signed graph embedding
  publication-title: BMC bioinformatics
– volume: 8
  start-page: 444
  year: 2011
  end-page: 445
  ident: bib0003
  article-title: Predicting protein associations with long noncoding RNAs
  publication-title: Nature methods
– start-page: 5438
  year: 2018
  end-page: 5445
  ident: bib0022
  article-title: Deconvolutional latent-variable model for text sequence matching
  publication-title: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence
– volume: 17
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib0008
  article-title: Predicting protein-protein interactions via multivariate mutual information of protein sequences
  publication-title: BMC bioinformatics
– start-page: 1
  year: 2016
  ident: bib0001
  article-title: TensorFlow: learning functions at scale
  publication-title: Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming
– volume: 57
  start-page: 1499
  year: 2017
  end-page: 1510
  ident: bib0009
  article-title: DeepPPI: Boosting prediction of protein–protein interactions with deep neural networks
  publication-title: Journal of chemical information and modeling
– start-page: 1
  year: 2021
  end-page: 6
  ident: bib0026
  article-title: A deep learning algorithm for predicting protein-protein interactions with nonnegative latent factorization
  publication-title: 2021 International Conference on Cyber-Physical Social Intelligence (ICCSI)
– volume: 27
  year: 2022
  ident: bib0010
  article-title: Benchmark Evaluation of Protein-Protein Interaction Prediction Algorithms
  publication-title: Molecules
– start-page: e1618
  year: 2022
  ident: bib0005
  article-title: Machine learning solutions for predicting protein-protein interactions
  publication-title: Wiley Interdisciplinary Reviews: Computational Molecular Science
– year: 2019
  ident: bib0012
  article-title: Target-Embedding Autoencoders for Supervised Representation Learning
  publication-title: International Conference on Learning Representations
– start-page: 17
  year: 2012
  end-page: 36
  ident: bib0004
  article-title: Deep learning of representations for unsupervised and transfer learning
  publication-title: Proceedings of ICML workshop on unsupervised and transfer learning, JMLR Workshop and Conference Proceedings
– reference: Ahooye Atashin, A., Bagherzadeh, P., Ghiasi-Shirazi, K., 2016. A two-stage learning method for protein-protein interaction prediction. arXiv e-prints, arXiv–1606.
– volume: 18
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib0016
  article-title: SPRINT: ultrafast protein-protein interaction prediction of the entire human interactome
  publication-title: BMC bioinformatics
– start-page: 5306
  year: 2019
  end-page: 5312
  ident: bib0029
  article-title: Dual-view variational autoencoders for semi-supervised text matching
  publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence
– start-page: e4256
  year: 2021
  ident: bib0013
  article-title: Prediction of protein-protein interactions using stacked auto-encoder
  publication-title: Transactions on Emerging Telecommunications Technologies
– year: 2021
  ident: bib0014
  article-title: Sequence representations and their utility for predicting protein-protein interactions
  publication-title: IEEE/ACM transactions on computational biology and bioinformatics
– start-page: 1
  year: 2007
  end-page: 10
  ident: bib0025
  article-title: A new pairwise kernel for biological network inference with support vector machines
  publication-title: BMC bioin-formatics
– volume: 35
  start-page: i305
  year: 2019
  end-page: i314
  ident: bib0006
  article-title: Multifaceted protein–protein interaction prediction based on siamese residual rcnn
  publication-title: Bioinformatics
– year: 2018
  ident: bib0027
  article-title: Predicting protein interactions using a deep learning method-stacked sparse autoencoder combined with a probabilistic classification vector machine
  publication-title: Complexity
– volume: 73
  year: 2022
  ident: bib0017
  article-title: Artificial intelligence approaches to human-microbiome protein–protein interactions
  publication-title: Current Opinion in Structural Biology
– volume: 18
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib0024
  article-title: Sequence-based prediction of protein protein interaction using a deep-learning algorithm
  publication-title: BMC bioinformatics
– volume: 13
  start-page: 1336
  year: 2017
  ident: 10.1016/j.procs.2022.09.261_bib0028
  article-title: Predicting protein–protein interactions from protein sequences by a stacked sparse autoencoder deep neural network
  publication-title: Molecular BioSystems
  doi: 10.1039/C7MB00188F
– year: 2021
  ident: 10.1016/j.procs.2022.09.261_bib0014
  article-title: Sequence representations and their utility for predicting protein-protein interactions
  publication-title: IEEE/ACM transactions on computational biology and bioinformatics
– volume: 21
  start-page: 218
  year: 2005
  ident: 10.1016/j.procs.2022.09.261_bib0018
  article-title: Predicting protein–protein interactions using signature products
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth483
– start-page: 1
  year: 2007
  ident: 10.1016/j.procs.2022.09.261_bib0025
  article-title: A new pairwise kernel for biological network inference with support vector machines
– volume: 57
  start-page: 1499
  year: 2017
  ident: 10.1016/j.procs.2022.09.261_bib0009
  article-title: DeepPPI: Boosting prediction of protein–protein interactions with deep neural networks
  publication-title: Journal of chemical information and modeling
  doi: 10.1021/acs.jcim.7b00028
– volume: 8
  start-page: 444
  year: 2011
  ident: 10.1016/j.procs.2022.09.261_bib0003
  article-title: Predicting protein associations with long noncoding RNAs
  publication-title: Nature methods
  doi: 10.1038/nmeth.1611
– volume: 36
  start-page: 3025
  year: 2008
  ident: 10.1016/j.procs.2022.09.261_bib0011
  article-title: Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkn159
– start-page: e4256
  year: 2021
  ident: 10.1016/j.procs.2022.09.261_bib0013
  article-title: Prediction of protein-protein interactions using stacked auto-encoder
  publication-title: Transactions on Emerging Telecommunications Technologies
– volume: 18
  start-page: 1
  year: 2017
  ident: 10.1016/j.procs.2022.09.261_bib0024
  article-title: Sequence-based prediction of protein protein interaction using a deep-learning algorithm
  publication-title: BMC bioinformatics
  doi: 10.1186/s12859-017-1700-2
– volume: 18
  start-page: 1
  year: 2017
  ident: 10.1016/j.procs.2022.09.261_bib0016
  article-title: SPRINT: ultrafast protein-protein interaction prediction of the entire human interactome
  publication-title: BMC bioinformatics
  doi: 10.1186/s12859-016-1414-x
– volume: 36
  start-page: 4286
  year: 2008
  ident: 10.1016/j.procs.2022.09.261_bib0021
  article-title: Global investigation of protein–protein interactions in yeast Saccharomyces cerevisiae using re-occurring short polypeptide sequences
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkn390
– volume: 23
  start-page: 643
  year: 2021
  ident: 10.1016/j.procs.2022.09.261_bib0007
  article-title: AutoPPI: An Ensemble of Deep Autoencoders for Protein–Protein Interaction Prediction
  publication-title: Entropy
  doi: 10.3390/e23060643
– start-page: 1
  year: 2016
  ident: 10.1016/j.procs.2022.09.261_bib0001
  article-title: TensorFlow: learning functions at scale
– ident: 10.1016/j.procs.2022.09.261_bib0002
– volume: 21
  start-page: 1
  year: 2020
  ident: 10.1016/j.procs.2022.09.261_bib0030
  article-title: Graph-based prediction of Protein-protein interactions with attributed signed graph embedding
  publication-title: BMC bioinformatics
  doi: 10.1186/s12859-020-03646-8
– volume: 104
  start-page: 4337
  year: 2007
  ident: 10.1016/j.procs.2022.09.261_bib0023
  article-title: Predicting protein–protein interactions based only on sequences information
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0607879104
– start-page: 17
  year: 2012
  ident: 10.1016/j.procs.2022.09.261_bib0004
  article-title: Deep learning of representations for unsupervised and transfer learning
– start-page: e1618
  year: 2022
  ident: 10.1016/j.procs.2022.09.261_bib0005
  article-title: Machine learning solutions for predicting protein-protein interactions
  publication-title: Wiley Interdisciplinary Reviews: Computational Molecular Science
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.procs.2022.09.261_bib0008
  article-title: Predicting protein-protein interactions via multivariate mutual information of protein sequences
  publication-title: BMC bioinformatics
  doi: 10.1186/s12859-016-1253-9
– start-page: 5306
  year: 2019
  ident: 10.1016/j.procs.2022.09.261_bib0029
  article-title: Dual-view variational autoencoders for semi-supervised text matching
– volume: 27
  year: 2022
  ident: 10.1016/j.procs.2022.09.261_bib0010
  article-title: Benchmark Evaluation of Protein-Protein Interaction Prediction Algorithms
  publication-title: Molecules
– start-page: 107
  year: 2018
  ident: 10.1016/j.procs.2022.09.261_bib0015
  article-title: Supervised autoencoders: improving generalization performance with unsupervised regularizers
– volume: 73
  year: 2022
  ident: 10.1016/j.procs.2022.09.261_bib0017
  article-title: Artificial intelligence approaches to human-microbiome protein–protein interactions
  publication-title: Current Opinion in Structural Biology
  doi: 10.1016/j.sbi.2022.102328
– start-page: 5438
  year: 2018
  ident: 10.1016/j.procs.2022.09.261_bib0022
  article-title: Deconvolutional latent-variable model for text sequence matching
– year: 2019
  ident: 10.1016/j.procs.2022.09.261_bib0012
  article-title: Target-Embedding Autoencoders for Supervised Representation Learning
– year: 2018
  ident: 10.1016/j.procs.2022.09.261_bib0027
  article-title: Predicting protein interactions using a deep learning method-stacked sparse autoencoder combined with a probabilistic classification vector machine
  publication-title: Complexity
  doi: 10.1155/2018/4216813
– volume: 35
  start-page: i305
  year: 2019
  ident: 10.1016/j.procs.2022.09.261_bib0006
  article-title: Multifaceted protein–protein interaction prediction based on siamese residual rcnn
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz328
– start-page: 1
  year: 2021
  ident: 10.1016/j.procs.2022.09.261_bib0026
  article-title: A deep learning algorithm for predicting protein-protein interactions with nonnegative latent factorization
– volume: 9
  start-page: 1134
  year: 2012
  ident: 10.1016/j.procs.2022.09.261_bib0020
  article-title: Flaws in evaluation schemes for pair-input computational predictions
  publication-title: Nature methods
  doi: 10.1038/nmeth.2259
– volume: 9
  start-page: 4992
  year: 2010
  ident: 10.1016/j.procs.2022.09.261_bib0019
  article-title: Large-Scale prediction of human protein- protein interactions from amino acid sequence based on latent topic features
  publication-title: Journal of proteome research
  doi: 10.1021/pr100618t
SSID ssj0000388917
Score 2.2368808
Snippet Identifying protein-protein interactions (PPIs) represents a challenging research problem in computational biology. Even though machine learning methods have...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2023
SubjectTerms 68T05
denoising autoencoders 2000 MSC: 92D20
protein-protein interaction prediction
supervised autoencoders
Title An Approach for Predicting Protein-Protein Interactions using Supervised Autoencoders
URI https://dx.doi.org/10.1016/j.procs.2022.09.261
Volume 207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La-MwEBal3cNe-tylb3TorRXUimvJx1BaurAbAtuW3owlS9BSnJDES0_72zujh-PNhrA97MVJRCwnni-jT5OZbwg5A6-vMl1JBlwhZ_BLtEzBJoxxUyksGtDSiT0_fheDgXx6yoehXerUtRMQdS3f3vLxfzU1jIGxsXT2A-ZuJ4UBeA5GhyOYHY7_ZPh-jdTSF0phDuFwgv_FuOzmIYoyPNcsPPpwoK9smJ43Lmrwsxmj95gCD-03sxHKXFYhST5yWFdbALBy6ejYEeI8LKMteF5V0ymemZTs26j0XbpjgIF3oo2JFIKhQIxfLJaMBRfKfefa6AQvfQlxWFCxR_tSZ-3jBi-4VGhUTuccJWe5F2f_Uxp7YclqEwljjtpL4SYpcJLiMi847og3uLjKsZ3Hj9_zuBuq3-SuEXP7TaIYlUv7--vDLCcsHRJyv002w-6B9r3Vd8iaqXfJVuzMQYOj3iMP_ZpGEFAAAZ2DgC6AgHZBQB0I6BwEtAuCL-Th9ub--o6FBhpMAy9PGAo_AN-2PLGK965smhrVQ49ciUxbmVaVzYzReSJ1mStRZuDeRSmUSUtpgTz1vpL1elSbfUKFsiZRLuglUytgo571VCq1gtlLoDgHhMe7VOigLo9NTl6LFSY6IBftSWMvrrL67Vm8_UUAtud9BSBq1YmHH7vOEfmMr3yg7ZiszyaNOSGf9K_Z83Ry6uD0DrTFidE
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Approach+for+Predicting+Protein-Protein+Interactions+using+Supervised+Autoencoders&rft.jtitle=Procedia+computer+science&rft.au=Albu%2C+Alexandra-Ioana&rft.date=2022&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=207&rft.spage=2023&rft.epage=2032&rft_id=info:doi/10.1016%2Fj.procs.2022.09.261&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2022_09_261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon