HAC++: Towards 100X Compression of 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) has emerged as a promising representation for novel view synthesis, boosting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganize...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 47; no. 11; pp. 10210 - 10226
Main Authors: Chen, Yihang, Wu, Qianyi, Lin, Weiyao, Harandi, Mehrtash, Cai, Jianfei
Format: Journal Article
Language:English
Published: United States IEEE 01.11.2025
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract 3D Gaussian Splatting (3DGS) has emerged as a promising representation for novel view synthesis, boosting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. In this paper, we propose HAC++, which explicitly minimizes the representation's entropy during optimization, enabling efficient arithmetic coding after training for compressed storage. Specifically, to reduce entropy, HAC++ leverages the relationships between unorganized anchors and a structured hash grid, utilizing their mutual information for context modeling. Additionally, HAC++ captures intra-anchor contextual relationships to further enhance compression performance. To facilitate entropy coding, we utilize Gaussian distributions to precisely estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Moreover, we incorporate an adaptive masking strategy to eliminate non-effective Gaussians and anchors. Overall, HAC++ achieves a remarkable size reduction of over <inline-formula><tex-math notation="LaTeX">100\times</tex-math> <mml:math><mml:mrow><mml:mn>100</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="lin-ieq1-3594066.gif"/> </inline-formula> compared to vanilla 3DGS when averaged on all datasets, while simultaneously improving fidelity. It also delivers more than <inline-formula><tex-math notation="LaTeX">20\times</tex-math> <mml:math><mml:mrow><mml:mn>20</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="lin-ieq2-3594066.gif"/> </inline-formula> size reduction compared to Scaffold-GS.
AbstractList 3D Gaussian Splatting (3DGS) has emerged as a promising representation for novel view synthesis, boosting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. In this paper, we propose HAC++, which explicitly minimizes the representation's entropy during optimization, enabling efficient arithmetic coding after training for compressed storage. Specifically, to reduce entropy, HAC++ leverages the relationships between unorganized anchors and a structured hash grid, utilizing their mutual information for context modeling. Additionally, HAC++ captures intra-anchor contextual relationships to further enhance compression performance. To facilitate entropy coding, we utilize Gaussian distributions to precisely estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Moreover, we incorporate an adaptive masking strategy to eliminate invalid Gaussians and anchors. Overall, HAC++ achieves a remarkable size reduction of over $100\times$ compared to vanilla 3DGS when averaged on all datasets, while simultaneously improving fidelity. It also delivers more than $20\times$ size reduction compared to Scaffold-GS. Our code is available at https://github.com/YihangChen-ee/HAC-plus.3D Gaussian Splatting (3DGS) has emerged as a promising representation for novel view synthesis, boosting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. In this paper, we propose HAC++, which explicitly minimizes the representation's entropy during optimization, enabling efficient arithmetic coding after training for compressed storage. Specifically, to reduce entropy, HAC++ leverages the relationships between unorganized anchors and a structured hash grid, utilizing their mutual information for context modeling. Additionally, HAC++ captures intra-anchor contextual relationships to further enhance compression performance. To facilitate entropy coding, we utilize Gaussian distributions to precisely estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Moreover, we incorporate an adaptive masking strategy to eliminate invalid Gaussians and anchors. Overall, HAC++ achieves a remarkable size reduction of over $100\times$ compared to vanilla 3DGS when averaged on all datasets, while simultaneously improving fidelity. It also delivers more than $20\times$ size reduction compared to Scaffold-GS. Our code is available at https://github.com/YihangChen-ee/HAC-plus.
3D Gaussian Splatting (3DGS) has emerged as a promising representation for novel view synthesis, boosting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. In this paper, we propose HAC++, which explicitly minimizes the representation's entropy during optimization, enabling efficient arithmetic coding after training for compressed storage. Specifically, to reduce entropy, HAC++ leverages the relationships between unorganized anchors and a structured hash grid, utilizing their mutual information for context modeling. Additionally, HAC++ captures intra-anchor contextual relationships to further enhance compression performance. To facilitate entropy coding, we utilize Gaussian distributions to precisely estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Moreover, we incorporate an adaptive masking strategy to eliminate non-effective Gaussians and anchors. Overall, HAC++ achieves a remarkable size reduction of over <inline-formula><tex-math notation="LaTeX">100\times</tex-math> <mml:math><mml:mrow><mml:mn>100</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="lin-ieq1-3594066.gif"/> </inline-formula> compared to vanilla 3DGS when averaged on all datasets, while simultaneously improving fidelity. It also delivers more than <inline-formula><tex-math notation="LaTeX">20\times</tex-math> <mml:math><mml:mrow><mml:mn>20</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="lin-ieq2-3594066.gif"/> </inline-formula> size reduction compared to Scaffold-GS.
3D Gaussian Splatting (3DGS) has emerged as a promising representation for novel view synthesis, boosting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. In this paper, we propose HAC++, which explicitly minimizes the representation's entropy during optimization, enabling efficient arithmetic coding after training for compressed storage. Specifically, to reduce entropy, HAC++ leverages the relationships between unorganized anchors and a structured hash grid, utilizing their mutual information for context modeling. Additionally, HAC++ captures intra-anchor contextual relationships to further enhance compression performance. To facilitate entropy coding, we utilize Gaussian distributions to precisely estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Moreover, we incorporate an adaptive masking strategy to eliminate non-effective Gaussians and anchors. Overall, HAC++ achieves a remarkable size reduction of over $100\times$100× compared to vanilla 3DGS when averaged on all datasets, while simultaneously improving fidelity. It also delivers more than $20\times$20× size reduction compared to Scaffold-GS.
Author Harandi, Mehrtash
Wu, Qianyi
Lin, Weiyao
Cai, Jianfei
Chen, Yihang
Author_xml – sequence: 1
  givenname: Yihang
  orcidid: 0000-0003-1127-1570
  surname: Chen
  fullname: Chen, Yihang
  email: yhchen.ee@sjtu.edu.cn
  organization: Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Qianyi
  orcidid: 0000-0001-8764-6178
  surname: Wu
  fullname: Wu, Qianyi
  email: qianyi.wu@monash.edu
  organization: Monash University, Melbourne, VIC, Australia
– sequence: 3
  givenname: Weiyao
  orcidid: 0000-0001-8307-7107
  surname: Lin
  fullname: Lin, Weiyao
  email: wylin@sjtu.edu.cn
  organization: Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Mehrtash
  orcidid: 0000-0002-6937-6300
  surname: Harandi
  fullname: Harandi, Mehrtash
  email: mehrtash.harandi@monash.edu
  organization: Monash University, Melbourne, VIC, Australia
– sequence: 5
  givenname: Jianfei
  orcidid: 0000-0002-9444-3763
  surname: Cai
  fullname: Cai, Jianfei
  email: jianfei.cai@monash.edu
  organization: Monash University, Melbourne, VIC, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40742858$$D View this record in MEDLINE/PubMed
BookMark eNpFkF1Lw0AQRRep2A_9AyKSR6Gkzs4mm41vJWpbqChYwbewTWYlki-zCeK_N7VVn4aBc-8wZ8wGZVUSY-ccZpxDeL15mj-sZgjoz4QfeiDlERshl-CGGOKAjYBLdJVCNWRja98BuOeDOGFDDwIPla9GTC3n0XR642yqT92k1uEAr05UFXVD1mZV6VTGEbfOQnf9qkvnuc5122bl2yk7Njq3dHaYE_Zyf7eJlu76cbGK5ms34SG2bgDUn0p5QCFqobQOZJoo7RmJJJWHxoAgCo3xUoWaglQBhiZNhJIaBN-KCbva99ZN9dGRbeMiswnluS6p6mwsUPg9jJ7q0csD2m0LSuO6yQrdfMW_3_YA7oGkqaxtyPwhHOKd0vhHabxTGh-U9qGLfSgjov9Aj0uuAvENv3Ru2g
CODEN ITPIDJ
Cites_doi 10.1109/TVCG.2024.3397828
10.1109/CVPR46437.2021.01453
10.1109/CVPR52729.2023.01981
10.1145/3592433
10.1109/CVPR52729.2023.01201
10.1109/ICME55011.2023.00374
10.1007/s41095-024-0436-y
10.1007/978-3-031-73414-4_25
10.1145/3272127.3275084
10.1109/CVPR52733.2024.01921
10.1109/CVPR52733.2024.02010
10.1002/0471200611
10.1111/cgf.70078
10.1145/3664647.3681468
10.1007/978-3-031-73013-9_2
10.1109/CVPR52688.2022.00539
10.1109/CVPR52733.2024.02052
10.1109/WACV56688.2023.00129
10.1145/214762.214771
10.1109/CVPR.2018.00068
10.1109/ICCV51070.2023.01606
10.1145/3651282
10.1007/978-3-031-72667-5_24
10.1109/CVPR52733.2024.01952
10.1109/CVPR.2016.445
10.1109/CVPR52688.2022.00542
10.1007/978-3-031-19824-3_20
10.1007/978-3-031-73036-8_4
10.1109/CVPR52733.2024.00985
10.1145/3599184.3599188
10.1145/3528223.3530127
10.1145/3072959.3073599
10.1145/3503250
10.1007/978-3-031-72980-5_10
10.1109/CVPR52729.2023.00411
10.1109/CVPR46437.2021.00149
10.1007/978-3-031-73636-0_5
10.1109/TIP.2003.819861
10.1609/aaai.v39i4.32441
10.1007/978-3-031-19824-3_7
10.1109/CVPR42600.2020.00796
10.1109/CVPR52688.2022.00538
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TPAMI.2025.3594066
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 10226
ExternalDocumentID 40742858
10_1109_TPAMI_2025_3594066
11106187
Genre orig-research
Journal Article
GrantInformation_xml – fundername: The Australian Research Council Discovery Program through MH
  grantid: DP230101176
– fundername: National Natural Science Foundation of China
  grantid: 62325109; U21B2013
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c192t-70e742d17e92a38aa76dc8a4f62e6842ff03ee9ff4d82ae7d8029fdc386a031b3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Thu Oct 02 22:11:24 EDT 2025
Tue Oct 07 09:50:08 EDT 2025
Sat Nov 29 07:24:04 EST 2025
Wed Oct 15 14:20:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c192t-70e742d17e92a38aa76dc8a4f62e6842ff03ee9ff4d82ae7d8029fdc386a031b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1127-1570
0000-0002-6937-6300
0000-0001-8764-6178
0000-0001-8307-7107
0000-0002-9444-3763
PMID 40742858
PQID 3235386248
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_3235386248
crossref_primary_10_1109_TPAMI_2025_3594066
pubmed_primary_40742858
ieee_primary_11106187
PublicationCentury 2000
PublicationDate 2025-Nov
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-Nov
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref56
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
Shin (ref27) 2023
Tang (ref30) 2022; 35
ref46
ref45
ref47
Fan (ref18) 2024
Chen (ref49) 2025
Song (ref31) 2024
ref43
Navaneet (ref36) 2024
Paszke (ref51) 2019; 32
ref8
ref7
Ballé (ref48) 2018
ref9
ref4
ref3
ref6
ref5
ref40
Bengio (ref50) 2013
ref35
ref34
ref37
ref33
ref32
ref2
ref1
Yang (ref42) 2024
ref39
Bjontegaard (ref55) 2001
Wang (ref44) 2024
Ali (ref38) 2024
ref24
ref23
ref26
ref25
ref20
ref22
Liu (ref41) 2024
ref21
ref28
ref29
Chen (ref12) 2024
References_xml – ident: ref13
  doi: 10.1109/TVCG.2024.3397828
– ident: ref20
  doi: 10.1109/CVPR46437.2021.01453
– ident: ref29
  doi: 10.1109/CVPR52729.2023.01981
– ident: ref7
  doi: 10.1145/3592433
– ident: ref6
  doi: 10.1109/CVPR52729.2023.01201
– ident: ref26
  doi: 10.1109/ICME55011.2023.00374
– ident: ref35
  doi: 10.1007/s41095-024-0436-y
– ident: ref53
  doi: 10.1007/978-3-031-73414-4_25
– year: 2024
  ident: ref31
  article-title: Spc-NeRF: Spatial predictive compression for voxel based radiance field
– year: 2001
  ident: ref55
  article-title: Calculation of average PSNR differences between RD-curves
– ident: ref54
  doi: 10.1145/3272127.3275084
– ident: ref32
  doi: 10.1109/CVPR52733.2024.01921
– ident: ref33
  doi: 10.1109/CVPR52733.2024.02010
– year: 2024
  ident: ref41
  article-title: HEMGS: A hybrid entropy model for 3D Gaussian splatting data compression
– ident: ref47
  doi: 10.1002/0471200611
– ident: ref14
  doi: 10.1111/cgf.70078
– ident: ref45
  doi: 10.1145/3664647.3681468
– ident: ref39
  doi: 10.1007/978-3-031-73013-9_2
– ident: ref11
  doi: 10.1109/CVPR52688.2022.00539
– ident: ref15
  doi: 10.1109/CVPR52733.2024.02052
– year: 2013
  ident: ref50
  article-title: Estimating or propagating gradients through stochastic neurons for conditional computation
– ident: ref25
  doi: 10.1109/WACV56688.2023.00129
– ident: ref22
  doi: 10.1145/214762.214771
– ident: ref57
  doi: 10.1109/CVPR.2018.00068
– year: 2024
  ident: ref12
  article-title: A survey on 3D Gaussian splatting
– year: 2024
  ident: ref42
  article-title: Spectrally pruned Gaussian fields with neural compensation
– volume: 32
  start-page: 8026
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2019
  ident: ref51
  article-title: PyTorch: An imperative style, high-performance deep learning library
– ident: ref28
  doi: 10.1109/ICCV51070.2023.01606
– ident: ref37
  doi: 10.1145/3651282
– ident: ref23
  doi: 10.1007/978-3-031-72667-5_24
– start-page: 55919
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2023
  ident: ref27
  article-title: Binary radiance fields
– volume-title: Proc. 13th Int. Conf. Learn. Representations
  year: 2025
  ident: ref49
  article-title: Fast feedforward 3D Gaussian splatting compression
– ident: ref21
  doi: 10.1109/CVPR52733.2024.01952
– start-page: 51532
  volume-title: Proc. Adv. neural Inf. Process. Syst.
  year: 2024
  ident: ref44
  article-title: ContextGS: Compact 3D Gaussian splatting with anchor level context model
– ident: ref8
  doi: 10.1109/CVPR.2016.445
– start-page: 330
  volume-title: Proc. Eur. Conf. Comput. Vis.
  year: 2024
  ident: ref36
  article-title: Compact3D: Compressing Gaussian splat radiance field models with vector quantization
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2018
  ident: ref48
  article-title: Variational image compression with a scale hyperprior
– ident: ref2
  doi: 10.1109/CVPR52688.2022.00542
– ident: ref5
  doi: 10.1007/978-3-031-19824-3_20
– ident: ref17
  doi: 10.1007/978-3-031-73036-8_4
– volume-title: Proc. BMVC
  year: 2024
  ident: ref38
  article-title: Trimming the fat: Efficient compression of 3D Gaussian splats through pruning
– volume: 35
  start-page: 14798
  year: 2022
  ident: ref30
  article-title: Compressible-composable NeRF via rank-residual decomposition
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref16
  doi: 10.1109/CVPR52733.2024.00985
– ident: ref46
  doi: 10.1145/3599184.3599188
– ident: ref4
  doi: 10.1145/3528223.3530127
– ident: ref52
  doi: 10.1145/3072959.3073599
– ident: ref1
  doi: 10.1145/3503250
– ident: ref43
  doi: 10.1007/978-3-031-72980-5_10
– ident: ref24
  doi: 10.1109/CVPR52729.2023.00411
– ident: ref9
  doi: 10.1109/CVPR46437.2021.00149
– ident: ref40
  doi: 10.1007/978-3-031-73636-0_5
– ident: ref56
  doi: 10.1109/TIP.2003.819861
– start-page: 140138
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2024
  ident: ref18
  article-title: LightGaussian: Unbounded 3D Gaussian compression with 15x reduction and 200 FPS
– ident: ref34
  doi: 10.1609/aaai.v39i4.32441
– ident: ref10
  doi: 10.1007/978-3-031-19824-3_7
– ident: ref19
  doi: 10.1109/CVPR42600.2020.00796
– ident: ref3
  doi: 10.1109/CVPR52688.2022.00538
SSID ssj0014503
Score 2.5037978
Snippet 3D Gaussian Splatting (3DGS) has emerged as a promising representation for novel view synthesis, boosting rapid rendering speed with high fidelity. However,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 10210
SubjectTerms 3D gaussian splatting (3DGS)
Adaptation models
compression
context model
Context modeling
Entropy
Entropy coding
Mutual information
Neural radiance field
Redundancy
Rendering (computer graphics)
Three-dimensional displays
Training
Title HAC++: Towards 100X Compression of 3D Gaussian Splatting
URI https://ieeexplore.ieee.org/document/11106187
https://www.ncbi.nlm.nih.gov/pubmed/40742858
https://www.proquest.com/docview/3235386248
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYAcYADzwHjMQWJ21TokrRJuE28hgRoEkParcpSV0JCHWIbvx8nbYELB249NE3rz6nt2M4HcEaRv0M3UZFz2kVSo4yMophHW-dcnGvSg3Bk_oN6etLjsRnWzeqhFwYRQ_EZnvvLkMvPp27ht8ouaF2S-dFqGZaVSqtmre-UgUwCDTK5MDQTxRFNh0xsLkbD_uM9xYI8OReJIRPmiYukjwq1p3r_ZZACw8rfzmYwOreb_3zdLdiovUvWr9RhG5aw3IHNhrmB1Qt5B9Z_HUO4C3rQv-p2L9kolNDOWC-Ox8wPqmpkSzYtmLhmd3Yx8y2X7Pn9zYZy6Ra83N6MrgZRzagQOfLk5pGKkT467yk03AptrUpzp60sUo4-IVcUsUA0RSFzzS0qwoqbIndCp5ZW_0TswUo5LfEAmEx6SqTIJ57lJu05kxirnCrchGttULah24g1e68OzshCwBGbLOCReTyyGo82tLz8fu6sRdeG0waKjPTeJzNsidPFLBNc0L865VK3Yb_C6Ht0A-3hH089gjU_edVSeAwr848FnsCq-5y_zj46pFxj3QnK9QUdT8Wf
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4ScCB54DxDBK3qVuXpE3CbeI1xDZNYki7VVnqSkioQ2zj95OkLXDhwK2Hpk39ObUd2_kArmzkb9BMRGCMNAGXyAMlbMwjtTEmTKXVA39kfk8MBnI8VsOyWd33wiCiLz7Dprv0ufx0ahZuq6xl16U1P1Isw2rEOQ2Ldq3vpAGPPBGydWLsu2wkUfXIhKo1Gnb6jzYapFGTRcoaMUddxF1cKB3Z-y-T5DlW_nY3vdm53_7nhHdgq_QvSadQiF1YwnwPtivuBlIu5T3Y_HUQ4T7Ibuem0bgmI19EOyPtMBwTN6ioks3JNCPsljzoxcw1XZLn9zftC6Zr8HJ_N7rpBiWnQmCsLzcPRIj2o9O2QEU1k1qLODVS8yym6FJyWRYyRJVlPJVUo7BoUZWlhslY2_U_YQewkk9zPALCo7ZgMdKJ47mJ20ZFSgsjMjOhUirkdWhUYk3ei6MzEh9yhCrxeCQOj6TEow41J7-fO0vR1eGygiKxmu_SGTrH6WKWMMrs3zqmXNbhsMDoe3QF7fEfT72A9e6o30t6j4OnE9hwEykaDE9hZf6xwDNYM5_z19nHuVexL-zIx_4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HAC%2B%2B%3A+Towards+100X+Compression+of+3D+Gaussian+Splatting&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Chen%2C+Yihang&rft.au=Wu%2C+Qianyi&rft.au=Lin%2C+Weiyao&rft.au=Harandi%2C+Mehrtash&rft.date=2025-11-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=47&rft.issue=11&rft.spage=10210&rft.epage=10226&rft_id=info:doi/10.1109%2FTPAMI.2025.3594066&rft_id=info%3Apmid%2F40742858&rft.externalDocID=11106187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon