PMGT-VR: a Decentralized Proximal-gradient Algorithmic Framework with Variance Reduction

This paper considers the decentralized composite optimization problem. We propose a novel decentralized variance-reduction proximal-gradient algorithmic framework, called PMGT-VR, which combines several techniques, including multi-consensus, gradient tracking, and variance reduction. The proposed fr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 48; číslo 1; s. 1 - 12
Hlavní autoři: Ye, Haishan, Xiong, Wei, Zhang, Tong
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 05.09.2025
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper considers the decentralized composite optimization problem. We propose a novel decentralized variance-reduction proximal-gradient algorithmic framework, called PMGT-VR, which combines several techniques, including multi-consensus, gradient tracking, and variance reduction. The proposed framework imitates centralized algorithms and algorithms under this framework achieve convergence rates similar to that of their centralized counterparts. We also describe and analyze two representative algorithms, PMGT-SAGA and PMGT-LSVRG, and compare them to existing state-of-the-art proximal algorithms. To the best of our knowledge, PMGT-VR is the first linearly convergent decentralized stochastic algorithm that can solve decentralized composite optimization problems. Numerical experiments are provided to demonstrate the effectiveness of the proposed algorithms.
AbstractList This article considers the decentralized composite optimization problem. We propose a novel decentralized variance-reduction proximal-gradient algorithmic framework, called PMGT-VR, which combines several techniques, including multi-consensus, gradient tracking, and variance reduction. The proposed framework imitates centralized algorithms and algorithms under this framework achieve convergence rates similar to that of their centralized counterparts. We also describe and analyze two representative algorithms, PMGT-SAGA and PMGT-LSVRG, and compare them to existing state-of-the-art proximal algorithms. To the best of our knowledge, PMGT-VR is the first linearly convergent decentralized stochastic algorithm that can solve decentralized composite optimization problems. Numerical experiments are provided to demonstrate the effectiveness of the proposed algorithms.
This paper considers the decentralized composite optimization problem. We propose a novel decentralized variance-reduction proximal-gradient algorithmic framework, called PMGT-VR, which combines several techniques, including multi-consensus, gradient tracking, and variance reduction. The proposed framework imitates centralized algorithms and algorithms under this framework achieve convergence rates similar to that of their centralized counterparts. We also describe and analyze two representative algorithms, PMGT-SAGA and PMGT-LSVRG, and compare them to existing state-of-the-art proximal algorithms. To the best of our knowledge, PMGT-VR is the first linearly convergent decentralized stochastic algorithm that can solve decentralized composite optimization problems. Numerical experiments are provided to demonstrate the effectiveness of the proposed algorithms.This paper considers the decentralized composite optimization problem. We propose a novel decentralized variance-reduction proximal-gradient algorithmic framework, called PMGT-VR, which combines several techniques, including multi-consensus, gradient tracking, and variance reduction. The proposed framework imitates centralized algorithms and algorithms under this framework achieve convergence rates similar to that of their centralized counterparts. We also describe and analyze two representative algorithms, PMGT-SAGA and PMGT-LSVRG, and compare them to existing state-of-the-art proximal algorithms. To the best of our knowledge, PMGT-VR is the first linearly convergent decentralized stochastic algorithm that can solve decentralized composite optimization problems. Numerical experiments are provided to demonstrate the effectiveness of the proposed algorithms.
This paper considers the decentralized composite optimization problem. We propose a novel decentralized variance-reduction proximal-gradient algorithmic framework, called PMGT-VR, which combines several techniques, including multi-consensus, gradient tracking, and variance reduction. The proposed framework imitates centralized algorithms and algorithms under this framework achieve convergence rates similar to that of their centralized counterparts. We also describe and analyze two representative algorithms, PMGT-SAGA and PMGT-LSVRG, and compare them to existing state-of-the-art proximal algorithms. To the best of our knowledge, PMGT-VR is the first linearly convergent decentralized stochastic algorithm that can solve decentralized composite optimization problems. Numerical experiments are provided to demonstrate the effectiveness of the proposed algorithms.
Author Ye, Haishan
Zhang, Tong
Xiong, Wei
Author_xml – sequence: 1
  givenname: Haishan
  surname: Ye
  fullname: Ye, Haishan
  email: hsye_cs@outlook.com
  organization: Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen, China
– sequence: 2
  givenname: Wei
  surname: Xiong
  fullname: Xiong, Wei
  email: weixiong5237@gmail.com
  organization: The Hong Kong University of Science and Technology, China
– sequence: 3
  givenname: Tong
  surname: Zhang
  fullname: Zhang, Tong
  email: tongzhang@tongzhang-ml.org
  organization: The Hong Kong University of Science and Technology, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40911449$$D View this record in MEDLINE/PubMed
BookMark eNpFkF1PwjAUhhuDkQ_9A8aYXXozbLuuW70jKEiCkRAk3i2lPcPqPrDbgvrrLYJ61eT0ed-c83RRqygLQOic4D4hWFwvZoOHSZ9iGvYDjnkcsSPUoYRjX1BBW6iDCad-HNO4jbpV9YoxYSEOTlCbYUEIY6KDnmcP44W_nN940rsFBUVtZWa-QHszW36YXGb-2kpt3Ic3yNalNfVLbpQ3sjKHbWnfvK2beEtpjSwUeHPQjapNWZyi41RmFZwd3h56Gt0thvf-9HE8GQ6mviKC1n4g0hRYCJKBSDHENKBMA0Aq41BHAJrjiMQiDeiKa8yBc6lDqohKA4gg5kEPXe17N7Z8b6Cqk9xUCrJMFlA2VeL6IhZx1-HQywParHLQyca6--xn8mvDAXQPKFtWlYX0DyE42SlPfpQnO-XJQbkLXexDxq39HyAkpKEQwTfafn0n
CODEN ITPIDJ
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TPAMI.2025.3606874
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 12
ExternalDocumentID 40911449
10_1109_TPAMI_2025_3606874
11152599
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
5VS
9M8
AAYXX
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
FA8
H~9
IBMZZ
ICLAB
IFJZH
RNI
RZB
VH1
NPM
7X8
ID FETCH-LOGICAL-c192t-39ffe45ea4e9f0e82324deeefa85d7eed607189f32b6d06e66ad52c1cf3e7e863
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Thu Oct 02 21:31:07 EDT 2025
Wed Dec 10 13:19:50 EST 2025
Sat Nov 29 07:23:24 EST 2025
Wed Oct 08 06:22:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c192t-39ffe45ea4e9f0e82324deeefa85d7eed607189f32b6d06e66ad52c1cf3e7e863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40911449
PQID 3247476189
PQPubID 23479
PageCount 12
ParticipantIDs crossref_primary_10_1109_TPAMI_2025_3606874
proquest_miscellaneous_3247476189
ieee_primary_11152599
pubmed_primary_40911449
PublicationCentury 2000
PublicationDate 20250905
PublicationDateYYYYMMDD 2025-09-05
PublicationDate_xml – month: 09
  year: 2025
  text: 20250905
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014503
Score 2.4887836
Snippet This paper considers the decentralized composite optimization problem. We propose a novel decentralized variance-reduction proximal-gradient algorithmic...
This article considers the decentralized composite optimization problem. We propose a novel decentralized variance-reduction proximal-gradient algorithmic...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Complexity theory
Convergence
Decentralized optimization
Loss measurement
Network topology
Optimization
proximal-gradient
Servers
Symmetric matrices
Topology
Training
variance reduction
Vectors
Title PMGT-VR: a Decentralized Proximal-gradient Algorithmic Framework with Variance Reduction
URI https://ieeexplore.ieee.org/document/11152599
https://www.ncbi.nlm.nih.gov/pubmed/40911449
https://www.proquest.com/docview/3247476189
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VVQ_tASilZVtYuVJvVSBZx07c2wrYtgfQCm3R3iLHHtNIsEEhixC_vmNvQrlw6C2HPBx_M5pvPC-Ar4nVic2ciHhJEpymZRKV2uiI8zK2ynkps2HYRHZ-ni8WatYVq4daGEQMyWd46C9DLN_WZuWPyo5ILwXRdbUBG1km18VaTyGDVIQxyERhSMXJj-grZGJ1NJ9Nzn6RLzgWh5wIe575aTzk2JAv4HtoPjNIYcLKy2QzGJ3p1n8udxs2O3bJJmtxeAevcLkDW_3kBtYp8g68fdaG8D0sZmc_5tHlxXem2Ql26ZrVI1o2a-qH6kZfR1dNSA1r2eT6qm6q9s9NZdi0T-xi_jSXXZLb7WWIXfh2sB7wXfg9PZ0f_4y6iQuRIabXRlw5h6lAnaJyMeaebln6L6dzYTMyp74bXU4QjktpY4lSaivGJjGOY4a55B9gsKyXuAcscS63UsbKV69iaRTXCdk-F_PUaiPcEL71217crhtrFMEhiVUR8Co8XkWH1xB2_f7-u7Pb2iF86aEqSC98sEMvsV7dFbRy8pQkrXYIH9cYPj3dQ__phbd-hjf-4yGVTOzDoG1WeACvzX1b3TUjEr5FPgrC9xel-NSs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21tFLhAJRS2Ja2rtRbFUjWcRJzW5VuQbCrFdqivUWOPaaRYINCFiF-fcfehHLh0FsOiTXxm9HMs-cD4FtkVGRSKwJekAbHcREFhdIq4LwIjbROy4wfNpGOx9lsJidtsbqvhUFEn3yG--7R3-WbSi_cUdkB2aWgcF2-hFcijvvhslzr8dIgFn4QMgUxZOTEJLoamVAeTCeD0Qmxwb7Y5xSyZ6mbx0PUhtiA66L5xCX5GSvPh5ve7Qw3_lPgTVhv40s2WCrEW3iB8y3Y6GY3sNaUt2DtSSPCdzCbjH5Ng4vzQ6bYEbYJm-UDGjapq_vyWl0Fl7VPDmvY4Oqyqsvmz3Wp2bBL7WLuPJddEPF2WsTOXUNYB_k2_B7-nP44DtqZC4GmWK8JuLQWY4EqRmlDzFzAZei_rMqEScmhun50GYHYLxITJpgkyoi-jrTlmGKW8PewMq_muAsssjYzSRJKV7-KhZZcReT9bMhjo7SwPfjebXt-s2ytkXtKEsrc45U7vPIWrx5su_3992a7tT342kGVk2W46w41x2pxm5PkxJUSkrYHO0sMH7_uoP_wzKpf4M3xdHSWn52MTz_CqhPEJ5aJPVhp6gV-gtf6rilv689eBf8C2zDXCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PMGT-VR%3A+A+Decentralized+Proximal-Gradient+Algorithmic+Framework+With+Variance+Reduction&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Ye%2C+Haishan&rft.au=Xiong%2C+Wei&rft.au=Zhang%2C+Tong&rft.date=2025-09-05&rft.eissn=1939-3539&rft.volume=48&rft.issue=1&rft.spage=408&rft_id=info:doi/10.1109%2FTPAMI.2025.3606874&rft_id=info%3Apmid%2F40911449&rft.externalDocID=40911449
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon