Self-interacting dark matter and small-scale gravitational lenses in galaxy clusters
Recently, Meneghetti et al. reported an excess of small-scale gravitational lenses in galaxy clusters. We study its implications for self-interacting dark matter (SIDM) compared with standard cold dark matter (CDM). We design controlled N-body simulations that incorporate observational constraints....
Uloženo v:
| Vydáno v: | Physical review. D Ročník 104; číslo 10 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Physical Society (APS)
01.11.2021
|
| Témata: | |
| ISSN: | 2470-0010, 2470-0029 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, Meneghetti et al. reported an excess of small-scale gravitational lenses in galaxy clusters. We study its implications for self-interacting dark matter (SIDM) compared with standard cold dark matter (CDM). We design controlled N-body simulations that incorporate observational constraints. The presence of early-type galaxies in cluster substructures can deepen gravitational potential and reduce tidal mass loss. Both scenarios require a relatively high baryon concentration in the substructure to accommodate the lensing measurements, and their tangential caustics are similar. The SIDM substructure can experience gravothermal collapse and produce a steeper density profile than its CDM counterpart, leading to a larger radial galaxy-galaxy strong-lensing cross section, although this effect is hard to observe. Our results indicate that SIDM can provide a unified explanation to small-scale lenses in galaxy clusters and stellar motion in dwarf galaxies. |
|---|---|
| AbstractList | Recently, Meneghetti et al. reported an excess of small-scale gravitational lenses in galaxy clusters. We study its implications for self-interacting dark matter (SIDM) compared with standard cold dark matter (CDM). We design controlled N-body simulations that incorporate observational constraints. The presence of early-type galaxies in cluster substructures can deepen gravitational potential and reduce tidal mass loss. Both scenarios require a relatively high baryon concentration in the substructure to accommodate the lensing measurements, and their tangential caustics are similar. The SIDM substructure can experience gravothermal collapse and produce a steeper density profile than its CDM counterpart, leading to a larger radial galaxy-galaxy strong-lensing cross section, although this effect is hard to observe. Our results indicate that SIDM can provide a unified explanation to small-scale lenses in galaxy clusters and stellar motion in dwarf galaxies. |
| ArticleNumber | 103031 |
| Author | Yu, Hai-Bo Yang, Daneng |
| Author_xml | – sequence: 1 givenname: Daneng orcidid: 0000-0002-5421-3138 surname: Yang fullname: Yang, Daneng – sequence: 2 givenname: Hai-Bo orcidid: 0000-0002-8421-8597 surname: Yu fullname: Yu, Hai-Bo |
| BackLink | https://www.osti.gov/servlets/purl/1979953$$D View this record in Osti.gov |
| BookMark | eNp9kM1LAzEQxYMoWGv_Ai_B-9bMZps0R6mfUFC0npfZfLTRNCubWOx_70qrBw8ehnk83m9g3gk5jG20hJwBGwMwfvG42qYnu7kaA6v64YzDARmUlWQFY6U6_NXAjskopVfWS8GUBBiQxbMNrvAx2w519nFJDXZvdI25dyhGQ9MaQyiSxmDpssONz5h9GzHQYGOyifpIlxjwc0t1-Eg9lk7JkcOQ7Gi_h-Tl5noxuyvmD7f3s8t5oUFBLrRylZPldFoC55VyRrqmcUxNBTdGiAZANEI6O5mUzljjmJgiIHPCyFJLLfiQnO_utin7OmmfrV7pNkarcw1KKjXhfUjtQrprU-qsq_X-hdyhDzWw-rvG-qfG3qjqXY09y_-w751fY7f9l_oCPOV7dw |
| CitedBy_id | crossref_primary_10_3847_1538_4357_ad6156 crossref_primary_10_3847_1538_4357_adaf9d crossref_primary_10_3847_1538_4357_ad51fd crossref_primary_10_3847_1538_4357_adf553 crossref_primary_10_1093_mnras_staf697 crossref_primary_10_1007_s11214_024_01051_8 crossref_primary_10_3847_2041_8213_ad0e09 crossref_primary_10_1093_mnras_stad2765 crossref_primary_10_1088_1475_7516_2024_02_032 crossref_primary_10_1051_0004_6361_202449849 crossref_primary_10_1088_1475_7516_2025_02_053 crossref_primary_10_1088_1475_7516_2025_08_048 crossref_primary_10_3847_1538_4357_adce82 crossref_primary_10_1016_j_jheap_2022_06_005 crossref_primary_10_1103_PhysRevD_111_103041 crossref_primary_10_1051_0004_6361_202553836 crossref_primary_10_1103_PhysRevD_107_043014 crossref_primary_10_1051_0004_6361_202243651 crossref_primary_10_1088_1475_7516_2022_09_077 crossref_primary_10_1088_1475_7516_2022_05_036 crossref_primary_10_1088_1475_7516_2024_07_049 crossref_primary_10_1051_0004_6361_202346975 crossref_primary_10_1016_j_physletb_2024_139062 crossref_primary_10_1051_0004_6361_202449872 crossref_primary_10_1093_mnras_stad2978 crossref_primary_10_3847_1538_4357_ad9b09 crossref_primary_10_1103_PhysRevD_111_063001 crossref_primary_10_1051_0004_6361_202244978 crossref_primary_10_1088_1475_7516_2024_09_074 crossref_primary_10_3847_1538_4357_acc73e crossref_primary_10_3847_2041_8213_ada02b |
| Cites_doi | 10.1103/PhysRevLett.84.3760 10.1086/378934 10.1016/S1384-1076(01)00042-2 10.1093/mnras/stx520 10.3847/1538-4357/aad4a7 10.1093/mnras/stz3480 10.1111/j.1365-2966.2005.09655.x 10.1103/PhysRevLett.116.041302 10.1088/1475-7516/2020/06/051 10.1051/0004-6361/201731498 10.1007/978-3-540-30310-7 10.1093/mnras/stz273 10.1093/mnras/stab267 10.1093/mnrasl/sly024 10.1093/mnras/staa3954 10.1093/mnras/stw3385 10.1007/s00159-018-0113-1 10.1093/mnras/stz2511 10.1093/mnras/stu742 10.1093/mnras/stu1284 10.1093/mnras/stx522 10.1088/1475-7516/2012/03/016 10.1086/519237 10.1088/1475-7516/2019/07/036 10.1088/1475-7516/2021/01/024 10.1093/mnras/stx2253 10.1103/PhysRevX.9.031020 10.1088/0004-637X/765/1/24 10.1093/mnras/stab2173 10.1103/PhysRevLett.88.101301 10.1016/j.physrep.2017.11.004 10.1093/mnras/stz1318 10.1086/164709 10.1086/304888 10.1093/mnras/sts261 10.1093/mnras/stab506 10.1088/0004-637X/800/1/38 10.1093/mnras/stab1392 10.1103/PhysRevLett.119.111102 10.1046/j.1365-8711.1998.01319.x 10.1093/mnrasl/slab028 10.1093/mnrasl/sls053 10.3847/1538-4357/abf9a3 10.1007/s00159-011-0047-3 10.1093/mnras/stt984 10.1086/318417 10.1093/mnras/stab2247 10.1046/j.1365-8711.2000.03555.x 10.1093/mnras/sty1516 10.1093/mnras/stab1725 10.3847/2041-8213/ac04b0 10.1093/mnras/sty084 10.1093/mnras/stu1536 10.1086/505696 10.1007/s11214-013-9981-x 10.1086/498884 10.1086/340303 10.1093/mnras/stx1400 10.1111/j.1365-2966.2009.15230.x 10.1093/mnras/sts514 10.1093/mnras/stx1043 10.1093/mnras/stab2209 10.1086/339038 10.1103/PhysRevLett.125.111105 10.1051/0004-6361/201935974 10.1111/j.1365-2966.2012.21182.x 10.1051/0004-6361/201321591 10.1103/PhysRevD.101.063009 10.1086/500124 10.1093/mnras/stx2956 10.1088/0004-637X/806/1/4 10.1126/science.aax5164 10.1088/1475-7516/2019/12/010 10.3847/1538-4357/aa9845 10.1088/0004-637X/804/2/131 10.1103/PhysRevLett.123.121102 10.1093/mnras/stz383 10.1111/j.1365-2966.2011.18684.x 10.1093/mnrasl/slz173 10.3847/2041-8205/827/1/L5 10.3847/1538-4357/aa9710 10.1093/mnras/stz2613 10.1088/1475-7516/2020/06/027 10.1103/PhysRevLett.124.141102 |
| ContentType | Journal Article |
| CorporateAuthor | Univ. of California, Riverside, CA (United States) |
| CorporateAuthor_xml | – name: Univ. of California, Riverside, CA (United States) |
| DBID | AAYXX CITATION OIOZB OTOTI |
| DOI | 10.1103/PhysRevD.104.103031 |
| DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2470-0029 |
| ExternalDocumentID | 1979953 10_1103_PhysRevD_104_103031 |
| GroupedDBID | 3MX 5VS AAYXX ABSSX AECSF AEQTI AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK CITATION EBS EJD ER. NPBMV ROL S7W 60C ABCKA ADETJ APKKM OIOZB OTOTI |
| ID | FETCH-LOGICAL-c191t-c9f4f7288213349fd7fbbf09863dd66b116b67fe552fdedf068a1a0f6d72c7c63 |
| ISSN | 2470-0010 |
| IngestDate | Mon Jan 15 05:23:17 EST 2024 Sat Nov 29 07:40:15 EST 2025 Tue Nov 18 20:03:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c191t-c9f4f7288213349fd7fbbf09863dd66b116b67fe552fdedf068a1a0f6d72c7c63 |
| Notes | USDOE Office of Science (SC) SC0008541 John Templeton Foundation National Key Research and Development Program of China NSFC |
| ORCID | 0000-0002-8421-8597 0000-0002-5421-3138 0000000284218597 0000000254213138 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1979953 |
| ParticipantIDs | osti_scitechconnect_1979953 crossref_citationtrail_10_1103_PhysRevD_104_103031 crossref_primary_10_1103_PhysRevD_104_103031 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Physical review. D |
| PublicationYear | 2021 |
| Publisher | American Physical Society (APS) |
| Publisher_xml | – name: American Physical Society (APS) |
| References | PhysRevD.104.103031Cc14R1 PhysRevD.104.103031Cc39R1 PhysRevD.104.103031Cc16R1 PhysRevD.104.103031Cc37R1 PhysRevD.104.103031Cc58R1 PhysRevD.104.103031Cc18R1 PhysRevD.104.103031Cc71R1 PhysRevD.104.103031Cc31R1 PhysRevD.104.103031Cc52R1 PhysRevD.104.103031Cc77R1 PhysRevD.104.103031Cc50R1 PhysRevD.104.103031Cc79R1 PhysRevD.104.103031Cc10R1 PhysRevD.104.103031Cc35R1 PhysRevD.104.103031Cc56R1 PhysRevD.104.103031Cc73R1 PhysRevD.104.103031Cc12R1 PhysRevD.104.103031Cc33R1 PhysRevD.104.103031Cc54R1 PhysRevD.104.103031Cc75R1 PhysRevD.104.103031Cc28R1 PhysRevD.104.103031Cc49R1 PhysRevD.104.103031Cc26R1 PhysRevD.104.103031Cc47R1 PhysRevD.104.103031Cc9R1 PhysRevD.104.103031Cc7R1 PhysRevD.104.103031Cc5R1 PhysRevD.104.103031Cc3R1 PhysRevD.104.103031Cc81R1 PhysRevD.104.103031Cc60R1 P. Schneider (PhysRevD.104.103031Cc80R1) 2006 PhysRevD.104.103031Cc41R1 PhysRevD.104.103031Cc66R1 PhysRevD.104.103031Cc87R1 PhysRevD.104.103031Cc68R1 P. Schneider (PhysRevD.104.103031Cc1R1) 1992 PhysRevD.104.103031Cc83R1 PhysRevD.104.103031Cc24R1 PhysRevD.104.103031Cc45R1 PhysRevD.104.103031Cc62R1 PhysRevD.104.103031Cc85R1 PhysRevD.104.103031Cc22R1 PhysRevD.104.103031Cc43R1 PhysRevD.104.103031Cc64R1 PhysRevD.104.103031Cc15R1 PhysRevD.104.103031Cc38R1 PhysRevD.104.103031Cc17R1 PhysRevD.104.103031Cc36R1 PhysRevD.104.103031Cc59R1 PhysRevD.104.103031Cc19R1 PhysRevD.104.103031Cc70R1 PhysRevD.104.103031Cc30R1 PhysRevD.104.103031Cc53R1 PhysRevD.104.103031Cc76R1 PhysRevD.104.103031Cc51R1 PhysRevD.104.103031Cc78R1 PhysRevD.104.103031Cc11R1 PhysRevD.104.103031Cc34R1 PhysRevD.104.103031Cc57R1 PhysRevD.104.103031Cc72R1 PhysRevD.104.103031Cc13R1 PhysRevD.104.103031Cc32R1 PhysRevD.104.103031Cc55R1 PhysRevD.104.103031Cc74R1 PhysRevD.104.103031Cc27R1 PhysRevD.104.103031Cc25R1 PhysRevD.104.103031Cc48R1 PhysRevD.104.103031Cc69R1 PhysRevD.104.103031Cc29R1 PhysRevD.104.103031Cc8R1 PhysRevD.104.103031Cc6R1 PhysRevD.104.103031Cc4R1 PhysRevD.104.103031Cc2R1 PhysRevD.104.103031Cc82R1 PhysRevD.104.103031Cc42R1 PhysRevD.104.103031Cc65R1 PhysRevD.104.103031Cc88R1 PhysRevD.104.103031Cc40R1 PhysRevD.104.103031Cc67R1 PhysRevD.104.103031Cc23R1 PhysRevD.104.103031Cc46R1 PhysRevD.104.103031Cc61R1 PhysRevD.104.103031Cc84R1 PhysRevD.104.103031Cc44R1 PhysRevD.104.103031Cc63R1 PhysRevD.104.103031Cc86R1 |
| References_xml | – ident: PhysRevD.104.103031Cc27R1 doi: 10.1103/PhysRevLett.84.3760 – ident: PhysRevD.104.103031Cc10R1 doi: 10.1086/378934 – ident: PhysRevD.104.103031Cc63R1 doi: 10.1016/S1384-1076(01)00042-2 – ident: PhysRevD.104.103031Cc65R1 doi: 10.1093/mnras/stx520 – ident: PhysRevD.104.103031Cc7R1 doi: 10.3847/1538-4357/aad4a7 – ident: PhysRevD.104.103031Cc19R1 doi: 10.1093/mnras/stz3480 – ident: PhysRevD.104.103031Cc62R1 doi: 10.1111/j.1365-2966.2005.09655.x – ident: PhysRevD.104.103031Cc28R1 doi: 10.1103/PhysRevLett.116.041302 – ident: PhysRevD.104.103031Cc50R1 doi: 10.1088/1475-7516/2020/06/051 – ident: PhysRevD.104.103031Cc53R1 doi: 10.1051/0004-6361/201731498 – volume-title: Gravitational Lensing: Strong, Weak and Micro: Saas-Fee Advanced Course 33 year: 2006 ident: PhysRevD.104.103031Cc80R1 doi: 10.1007/978-3-540-30310-7 – ident: PhysRevD.104.103031Cc83R1 doi: 10.1093/mnras/stz273 – ident: PhysRevD.104.103031Cc54R1 doi: 10.3847/1538-4357/aad4a7 – ident: PhysRevD.104.103031Cc88R1 doi: 10.1093/mnras/stab267 – ident: PhysRevD.104.103031Cc81R1 doi: 10.1093/mnrasl/sly024 – ident: PhysRevD.104.103031Cc84R1 doi: 10.1093/mnras/staa3954 – ident: PhysRevD.104.103031Cc13R1 doi: 10.1093/mnras/stw3385 – ident: PhysRevD.104.103031Cc37R1 doi: 10.1007/s00159-018-0113-1 – ident: PhysRevD.104.103031Cc39R1 doi: 10.1093/mnras/stz2511 – ident: PhysRevD.104.103031Cc55R1 doi: 10.1093/mnras/stu742 – ident: PhysRevD.104.103031Cc17R1 doi: 10.1093/mnras/stu1284 – ident: PhysRevD.104.103031Cc36R1 doi: 10.1093/mnras/stx522 – ident: PhysRevD.104.103031Cc3R1 doi: 10.1088/1475-7516/2012/03/016 – ident: PhysRevD.104.103031Cc60R1 doi: 10.1086/519237 – ident: PhysRevD.104.103031Cc45R1 doi: 10.1088/1475-7516/2019/07/036 – ident: PhysRevD.104.103031Cc42R1 doi: 10.1088/1475-7516/2021/01/024 – ident: PhysRevD.104.103031Cc86R1 doi: 10.1093/mnras/stx2253 – ident: PhysRevD.104.103031Cc38R1 doi: 10.1103/PhysRevX.9.031020 – ident: PhysRevD.104.103031Cc5R1 doi: 10.1088/0004-637X/765/1/24 – ident: PhysRevD.104.103031Cc85R1 doi: 10.1093/mnras/stab2173 – ident: PhysRevD.104.103031Cc43R1 doi: 10.1103/PhysRevLett.88.101301 – ident: PhysRevD.104.103031Cc29R1 doi: 10.1016/j.physrep.2017.11.004 – ident: PhysRevD.104.103031Cc68R1 doi: 10.1093/mnras/stz1318 – ident: PhysRevD.104.103031Cc79R1 doi: 10.1086/164709 – ident: PhysRevD.104.103031Cc51R1 doi: 10.1086/304888 – ident: PhysRevD.104.103031Cc56R1 doi: 10.1093/mnras/sts261 – ident: PhysRevD.104.103031Cc75R1 doi: 10.1093/mnras/stab506 – ident: PhysRevD.104.103031Cc12R1 doi: 10.1088/0004-637X/800/1/38 – ident: PhysRevD.104.103031Cc25R1 doi: 10.1093/mnras/stab1392 – ident: PhysRevD.104.103031Cc35R1 doi: 10.1103/PhysRevLett.119.111102 – ident: PhysRevD.104.103031Cc8R1 doi: 10.1046/j.1365-8711.1998.01319.x – ident: PhysRevD.104.103031Cc26R1 doi: 10.1093/mnrasl/slab028 – ident: PhysRevD.104.103031Cc33R1 doi: 10.1093/mnrasl/sls053 – ident: PhysRevD.104.103031Cc22R1 doi: 10.3847/1538-4357/abf9a3 – ident: PhysRevD.104.103031Cc2R1 doi: 10.1007/s00159-011-0047-3 – ident: PhysRevD.104.103031Cc64R1 doi: 10.1093/mnras/stt984 – ident: PhysRevD.104.103031Cc30R1 doi: 10.1086/318417 – ident: PhysRevD.104.103031Cc18R1 doi: 10.1093/mnras/stab2247 – ident: PhysRevD.104.103031Cc34R1 doi: 10.1046/j.1365-8711.2000.03555.x – ident: PhysRevD.104.103031Cc71R1 doi: 10.1093/mnras/sty1516 – ident: PhysRevD.104.103031Cc76R1 doi: 10.1093/mnras/stab1725 – ident: PhysRevD.104.103031Cc46R1 doi: 10.3847/2041-8213/ac04b0 – ident: PhysRevD.104.103031Cc67R1 doi: 10.1093/mnras/sty084 – ident: PhysRevD.104.103031Cc69R1 doi: 10.1093/mnras/stu1536 – ident: PhysRevD.104.103031Cc59R1 doi: 10.1086/505696 – ident: PhysRevD.104.103031Cc78R1 doi: 10.1007/s11214-013-9981-x – ident: PhysRevD.104.103031Cc57R1 doi: 10.1086/498884 – ident: PhysRevD.104.103031Cc9R1 doi: 10.1086/340303 – ident: PhysRevD.104.103031Cc14R1 doi: 10.1093/mnras/stx1400 – ident: PhysRevD.104.103031Cc11R1 doi: 10.1111/j.1365-2966.2009.15230.x – ident: PhysRevD.104.103031Cc32R1 doi: 10.1093/mnras/sts514 – ident: PhysRevD.104.103031Cc82R1 doi: 10.1093/mnras/stx1043 – ident: PhysRevD.104.103031Cc16R1 doi: 10.1093/mnras/stab2209 – ident: PhysRevD.104.103031Cc47R1 doi: 10.1086/339038 – volume-title: Gravitational Lenses year: 1992 ident: PhysRevD.104.103031Cc1R1 – ident: PhysRevD.104.103031Cc41R1 doi: 10.1103/PhysRevLett.125.111105 – ident: PhysRevD.104.103031Cc52R1 doi: 10.1051/0004-6361/201935974 – ident: PhysRevD.104.103031Cc31R1 doi: 10.1111/j.1365-2966.2012.21182.x – ident: PhysRevD.104.103031Cc77R1 doi: 10.1051/0004-6361/201321591 – ident: PhysRevD.104.103031Cc72R1 doi: 10.1103/PhysRevD.101.063009 – ident: PhysRevD.104.103031Cc58R1 doi: 10.1086/500124 – ident: PhysRevD.104.103031Cc66R1 doi: 10.1093/mnras/stx2956 – ident: PhysRevD.104.103031Cc4R1 doi: 10.1088/0004-637X/806/1/4 – ident: PhysRevD.104.103031Cc23R1 doi: 10.1126/science.aax5164 – ident: PhysRevD.104.103031Cc74R1 doi: 10.1088/1475-7516/2019/12/010 – ident: PhysRevD.104.103031Cc6R1 doi: 10.3847/1538-4357/aa9845 – ident: PhysRevD.104.103031Cc44R1 doi: 10.1088/0004-637X/804/2/131 – ident: PhysRevD.104.103031Cc49R1 doi: 10.1103/PhysRevLett.123.121102 – ident: PhysRevD.104.103031Cc61R1 doi: 10.1093/mnras/stz383 – ident: PhysRevD.104.103031Cc48R1 doi: 10.1111/j.1365-2966.2011.18684.x – ident: PhysRevD.104.103031Cc15R1 doi: 10.1093/mnrasl/slz173 – ident: PhysRevD.104.103031Cc24R1 doi: 10.3847/2041-8205/827/1/L5 – ident: PhysRevD.104.103031Cc70R1 doi: 10.3847/1538-4357/aa9710 – ident: PhysRevD.104.103031Cc87R1 doi: 10.1093/mnras/stz2613 – ident: PhysRevD.104.103031Cc40R1 doi: 10.1088/1475-7516/2020/06/027 – ident: PhysRevD.104.103031Cc73R1 doi: 10.1103/PhysRevLett.124.141102 |
| SSID | ssj0001609711 |
| Score | 2.6126044 |
| Snippet | Recently, Meneghetti et al. reported an excess of small-scale gravitational lenses in galaxy clusters. We study its implications for self-interacting dark... |
| SourceID | osti crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| SubjectTerms | ASTRONOMY AND ASTROPHYSICS ATOMIC AND MOLECULAR PHYSICS Dark matter |
| Title | Self-interacting dark matter and small-scale gravitational lenses in galaxy clusters |
| URI | https://www.osti.gov/servlets/purl/1979953 |
| Volume | 104 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 2470-0029 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001609711 issn: 2470-0010 databaseCode: ER. dateStart: 20180101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWBSQuFU9RCsgHbiEljhM7OfIU4lBVZZHKKXL8QKum2WqzXS3_vuNHstmqquiBixVZycjJ53hm7JlvEHqnJVM1tdSXRuRxlqUSfilolCSCU1KLTBpXbIIfHRWnp-XxZPKjz4VZN7xti82mvPivUEMfgG1TZ-8A9yAUOuAaQIcWYIf2n4D_qRsTWxYIl__U_omUWJ5F545H0x0VdOeiaeIOwNGRrT4UWLoBK9BAnQvQikBviM3fSDaXlkihG5uwxz2yPuvlcBsz_DvsPcNM0kEhupJfTr2JefxpMd5jSElIthuWojSz5WmSEICqx31hv6JfS30t4X7SJDcv0okli7CjPdHrL_aU2ab-J0Eb7FBiX1NVQwChc10SWvVCKhBSeSH30P2U56VzIk4Ot_ttzLJlWf97eJlAQgWPfbhhMDuGynQBC-7I8Jg9RnvBY8AfPdJP0ES3T9FDj0L3DM2u440t3tjjjQFvPMIb7-CNPd543mKPN-7xfo5-ffs6-_w9DqUyYgkO9yqWpckMT8FdIpRmpVHc1LVJyoJRpRirCWE140bneWqUViZhhSAiMUzxVHLJ6As0bRetfolwLcEq1BQMPbCljSwKQ7QwHH5lrlit9T5K--9SyTBiW86kqW4BZR-9Hx668DQqt99-YD94BVagpTKWNuZLripiz6Bz-upuwg7Qo-2cfo2mq-WlfoMeyPVq3i3fullyBSk_drg |
| linkProvider | SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-interacting+dark+matter+and+small-scale+gravitational+lenses+in+galaxy+clusters&rft.jtitle=Physical+review.+D&rft.au=Yang%2C+Daneng&rft.au=Yu%2C+Hai-Bo&rft.date=2021-11-01&rft.issn=2470-0010&rft.eissn=2470-0029&rft.volume=104&rft.issue=10&rft_id=info:doi/10.1103%2FPhysRevD.104.103031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevD_104_103031 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-0010&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-0010&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-0010&client=summon |