Self-interacting dark matter and small-scale gravitational lenses in galaxy clusters

Recently, Meneghetti et al. reported an excess of small-scale gravitational lenses in galaxy clusters. We study its implications for self-interacting dark matter (SIDM) compared with standard cold dark matter (CDM). We design controlled N-body simulations that incorporate observational constraints....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review. D Ročník 104; číslo 10
Hlavní autoři: Yang, Daneng, Yu, Hai-Bo
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Physical Society (APS) 01.11.2021
Témata:
ISSN:2470-0010, 2470-0029
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, Meneghetti et al. reported an excess of small-scale gravitational lenses in galaxy clusters. We study its implications for self-interacting dark matter (SIDM) compared with standard cold dark matter (CDM). We design controlled N-body simulations that incorporate observational constraints. The presence of early-type galaxies in cluster substructures can deepen gravitational potential and reduce tidal mass loss. Both scenarios require a relatively high baryon concentration in the substructure to accommodate the lensing measurements, and their tangential caustics are similar. The SIDM substructure can experience gravothermal collapse and produce a steeper density profile than its CDM counterpart, leading to a larger radial galaxy-galaxy strong-lensing cross section, although this effect is hard to observe. Our results indicate that SIDM can provide a unified explanation to small-scale lenses in galaxy clusters and stellar motion in dwarf galaxies.
AbstractList Recently, Meneghetti et al. reported an excess of small-scale gravitational lenses in galaxy clusters. We study its implications for self-interacting dark matter (SIDM) compared with standard cold dark matter (CDM). We design controlled N-body simulations that incorporate observational constraints. The presence of early-type galaxies in cluster substructures can deepen gravitational potential and reduce tidal mass loss. Both scenarios require a relatively high baryon concentration in the substructure to accommodate the lensing measurements, and their tangential caustics are similar. The SIDM substructure can experience gravothermal collapse and produce a steeper density profile than its CDM counterpart, leading to a larger radial galaxy-galaxy strong-lensing cross section, although this effect is hard to observe. Our results indicate that SIDM can provide a unified explanation to small-scale lenses in galaxy clusters and stellar motion in dwarf galaxies.
ArticleNumber 103031
Author Yu, Hai-Bo
Yang, Daneng
Author_xml – sequence: 1
  givenname: Daneng
  orcidid: 0000-0002-5421-3138
  surname: Yang
  fullname: Yang, Daneng
– sequence: 2
  givenname: Hai-Bo
  orcidid: 0000-0002-8421-8597
  surname: Yu
  fullname: Yu, Hai-Bo
BackLink https://www.osti.gov/servlets/purl/1979953$$D View this record in Osti.gov
BookMark eNp9kM1LAzEQxYMoWGv_Ai_B-9bMZps0R6mfUFC0npfZfLTRNCubWOx_70qrBw8ehnk83m9g3gk5jG20hJwBGwMwfvG42qYnu7kaA6v64YzDARmUlWQFY6U6_NXAjskopVfWS8GUBBiQxbMNrvAx2w519nFJDXZvdI25dyhGQ9MaQyiSxmDpssONz5h9GzHQYGOyifpIlxjwc0t1-Eg9lk7JkcOQ7Gi_h-Tl5noxuyvmD7f3s8t5oUFBLrRylZPldFoC55VyRrqmcUxNBTdGiAZANEI6O5mUzljjmJgiIHPCyFJLLfiQnO_utin7OmmfrV7pNkarcw1KKjXhfUjtQrprU-qsq_X-hdyhDzWw-rvG-qfG3qjqXY09y_-w751fY7f9l_oCPOV7dw
CitedBy_id crossref_primary_10_3847_1538_4357_ad6156
crossref_primary_10_3847_1538_4357_adaf9d
crossref_primary_10_3847_1538_4357_ad51fd
crossref_primary_10_3847_1538_4357_adf553
crossref_primary_10_1093_mnras_staf697
crossref_primary_10_1007_s11214_024_01051_8
crossref_primary_10_3847_2041_8213_ad0e09
crossref_primary_10_1093_mnras_stad2765
crossref_primary_10_1088_1475_7516_2024_02_032
crossref_primary_10_1051_0004_6361_202449849
crossref_primary_10_1088_1475_7516_2025_02_053
crossref_primary_10_1088_1475_7516_2025_08_048
crossref_primary_10_3847_1538_4357_adce82
crossref_primary_10_1016_j_jheap_2022_06_005
crossref_primary_10_1103_PhysRevD_111_103041
crossref_primary_10_1051_0004_6361_202553836
crossref_primary_10_1103_PhysRevD_107_043014
crossref_primary_10_1051_0004_6361_202243651
crossref_primary_10_1088_1475_7516_2022_09_077
crossref_primary_10_1088_1475_7516_2022_05_036
crossref_primary_10_1088_1475_7516_2024_07_049
crossref_primary_10_1051_0004_6361_202346975
crossref_primary_10_1016_j_physletb_2024_139062
crossref_primary_10_1051_0004_6361_202449872
crossref_primary_10_1093_mnras_stad2978
crossref_primary_10_3847_1538_4357_ad9b09
crossref_primary_10_1103_PhysRevD_111_063001
crossref_primary_10_1051_0004_6361_202244978
crossref_primary_10_1088_1475_7516_2024_09_074
crossref_primary_10_3847_1538_4357_acc73e
crossref_primary_10_3847_2041_8213_ada02b
Cites_doi 10.1103/PhysRevLett.84.3760
10.1086/378934
10.1016/S1384-1076(01)00042-2
10.1093/mnras/stx520
10.3847/1538-4357/aad4a7
10.1093/mnras/stz3480
10.1111/j.1365-2966.2005.09655.x
10.1103/PhysRevLett.116.041302
10.1088/1475-7516/2020/06/051
10.1051/0004-6361/201731498
10.1007/978-3-540-30310-7
10.1093/mnras/stz273
10.1093/mnras/stab267
10.1093/mnrasl/sly024
10.1093/mnras/staa3954
10.1093/mnras/stw3385
10.1007/s00159-018-0113-1
10.1093/mnras/stz2511
10.1093/mnras/stu742
10.1093/mnras/stu1284
10.1093/mnras/stx522
10.1088/1475-7516/2012/03/016
10.1086/519237
10.1088/1475-7516/2019/07/036
10.1088/1475-7516/2021/01/024
10.1093/mnras/stx2253
10.1103/PhysRevX.9.031020
10.1088/0004-637X/765/1/24
10.1093/mnras/stab2173
10.1103/PhysRevLett.88.101301
10.1016/j.physrep.2017.11.004
10.1093/mnras/stz1318
10.1086/164709
10.1086/304888
10.1093/mnras/sts261
10.1093/mnras/stab506
10.1088/0004-637X/800/1/38
10.1093/mnras/stab1392
10.1103/PhysRevLett.119.111102
10.1046/j.1365-8711.1998.01319.x
10.1093/mnrasl/slab028
10.1093/mnrasl/sls053
10.3847/1538-4357/abf9a3
10.1007/s00159-011-0047-3
10.1093/mnras/stt984
10.1086/318417
10.1093/mnras/stab2247
10.1046/j.1365-8711.2000.03555.x
10.1093/mnras/sty1516
10.1093/mnras/stab1725
10.3847/2041-8213/ac04b0
10.1093/mnras/sty084
10.1093/mnras/stu1536
10.1086/505696
10.1007/s11214-013-9981-x
10.1086/498884
10.1086/340303
10.1093/mnras/stx1400
10.1111/j.1365-2966.2009.15230.x
10.1093/mnras/sts514
10.1093/mnras/stx1043
10.1093/mnras/stab2209
10.1086/339038
10.1103/PhysRevLett.125.111105
10.1051/0004-6361/201935974
10.1111/j.1365-2966.2012.21182.x
10.1051/0004-6361/201321591
10.1103/PhysRevD.101.063009
10.1086/500124
10.1093/mnras/stx2956
10.1088/0004-637X/806/1/4
10.1126/science.aax5164
10.1088/1475-7516/2019/12/010
10.3847/1538-4357/aa9845
10.1088/0004-637X/804/2/131
10.1103/PhysRevLett.123.121102
10.1093/mnras/stz383
10.1111/j.1365-2966.2011.18684.x
10.1093/mnrasl/slz173
10.3847/2041-8205/827/1/L5
10.3847/1538-4357/aa9710
10.1093/mnras/stz2613
10.1088/1475-7516/2020/06/027
10.1103/PhysRevLett.124.141102
ContentType Journal Article
CorporateAuthor Univ. of California, Riverside, CA (United States)
CorporateAuthor_xml – name: Univ. of California, Riverside, CA (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1103/PhysRevD.104.103031
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2470-0029
ExternalDocumentID 1979953
10_1103_PhysRevD_104_103031
GroupedDBID 3MX
5VS
AAYXX
ABSSX
AECSF
AEQTI
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
CITATION
EBS
EJD
ER.
NPBMV
ROL
S7W
60C
ABCKA
ADETJ
APKKM
OIOZB
OTOTI
ID FETCH-LOGICAL-c191t-c9f4f7288213349fd7fbbf09863dd66b116b67fe552fdedf068a1a0f6d72c7c63
ISSN 2470-0010
IngestDate Mon Jan 15 05:23:17 EST 2024
Sat Nov 29 07:40:15 EST 2025
Tue Nov 18 20:03:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c191t-c9f4f7288213349fd7fbbf09863dd66b116b67fe552fdedf068a1a0f6d72c7c63
Notes USDOE Office of Science (SC)
SC0008541
John Templeton Foundation
National Key Research and Development Program of China
NSFC
ORCID 0000-0002-8421-8597
0000-0002-5421-3138
0000000284218597
0000000254213138
OpenAccessLink https://www.osti.gov/servlets/purl/1979953
ParticipantIDs osti_scitechconnect_1979953
crossref_citationtrail_10_1103_PhysRevD_104_103031
crossref_primary_10_1103_PhysRevD_104_103031
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review. D
PublicationYear 2021
Publisher American Physical Society (APS)
Publisher_xml – name: American Physical Society (APS)
References PhysRevD.104.103031Cc14R1
PhysRevD.104.103031Cc39R1
PhysRevD.104.103031Cc16R1
PhysRevD.104.103031Cc37R1
PhysRevD.104.103031Cc58R1
PhysRevD.104.103031Cc18R1
PhysRevD.104.103031Cc71R1
PhysRevD.104.103031Cc31R1
PhysRevD.104.103031Cc52R1
PhysRevD.104.103031Cc77R1
PhysRevD.104.103031Cc50R1
PhysRevD.104.103031Cc79R1
PhysRevD.104.103031Cc10R1
PhysRevD.104.103031Cc35R1
PhysRevD.104.103031Cc56R1
PhysRevD.104.103031Cc73R1
PhysRevD.104.103031Cc12R1
PhysRevD.104.103031Cc33R1
PhysRevD.104.103031Cc54R1
PhysRevD.104.103031Cc75R1
PhysRevD.104.103031Cc28R1
PhysRevD.104.103031Cc49R1
PhysRevD.104.103031Cc26R1
PhysRevD.104.103031Cc47R1
PhysRevD.104.103031Cc9R1
PhysRevD.104.103031Cc7R1
PhysRevD.104.103031Cc5R1
PhysRevD.104.103031Cc3R1
PhysRevD.104.103031Cc81R1
PhysRevD.104.103031Cc60R1
P. Schneider (PhysRevD.104.103031Cc80R1) 2006
PhysRevD.104.103031Cc41R1
PhysRevD.104.103031Cc66R1
PhysRevD.104.103031Cc87R1
PhysRevD.104.103031Cc68R1
P. Schneider (PhysRevD.104.103031Cc1R1) 1992
PhysRevD.104.103031Cc83R1
PhysRevD.104.103031Cc24R1
PhysRevD.104.103031Cc45R1
PhysRevD.104.103031Cc62R1
PhysRevD.104.103031Cc85R1
PhysRevD.104.103031Cc22R1
PhysRevD.104.103031Cc43R1
PhysRevD.104.103031Cc64R1
PhysRevD.104.103031Cc15R1
PhysRevD.104.103031Cc38R1
PhysRevD.104.103031Cc17R1
PhysRevD.104.103031Cc36R1
PhysRevD.104.103031Cc59R1
PhysRevD.104.103031Cc19R1
PhysRevD.104.103031Cc70R1
PhysRevD.104.103031Cc30R1
PhysRevD.104.103031Cc53R1
PhysRevD.104.103031Cc76R1
PhysRevD.104.103031Cc51R1
PhysRevD.104.103031Cc78R1
PhysRevD.104.103031Cc11R1
PhysRevD.104.103031Cc34R1
PhysRevD.104.103031Cc57R1
PhysRevD.104.103031Cc72R1
PhysRevD.104.103031Cc13R1
PhysRevD.104.103031Cc32R1
PhysRevD.104.103031Cc55R1
PhysRevD.104.103031Cc74R1
PhysRevD.104.103031Cc27R1
PhysRevD.104.103031Cc25R1
PhysRevD.104.103031Cc48R1
PhysRevD.104.103031Cc69R1
PhysRevD.104.103031Cc29R1
PhysRevD.104.103031Cc8R1
PhysRevD.104.103031Cc6R1
PhysRevD.104.103031Cc4R1
PhysRevD.104.103031Cc2R1
PhysRevD.104.103031Cc82R1
PhysRevD.104.103031Cc42R1
PhysRevD.104.103031Cc65R1
PhysRevD.104.103031Cc88R1
PhysRevD.104.103031Cc40R1
PhysRevD.104.103031Cc67R1
PhysRevD.104.103031Cc23R1
PhysRevD.104.103031Cc46R1
PhysRevD.104.103031Cc61R1
PhysRevD.104.103031Cc84R1
PhysRevD.104.103031Cc44R1
PhysRevD.104.103031Cc63R1
PhysRevD.104.103031Cc86R1
References_xml – ident: PhysRevD.104.103031Cc27R1
  doi: 10.1103/PhysRevLett.84.3760
– ident: PhysRevD.104.103031Cc10R1
  doi: 10.1086/378934
– ident: PhysRevD.104.103031Cc63R1
  doi: 10.1016/S1384-1076(01)00042-2
– ident: PhysRevD.104.103031Cc65R1
  doi: 10.1093/mnras/stx520
– ident: PhysRevD.104.103031Cc7R1
  doi: 10.3847/1538-4357/aad4a7
– ident: PhysRevD.104.103031Cc19R1
  doi: 10.1093/mnras/stz3480
– ident: PhysRevD.104.103031Cc62R1
  doi: 10.1111/j.1365-2966.2005.09655.x
– ident: PhysRevD.104.103031Cc28R1
  doi: 10.1103/PhysRevLett.116.041302
– ident: PhysRevD.104.103031Cc50R1
  doi: 10.1088/1475-7516/2020/06/051
– ident: PhysRevD.104.103031Cc53R1
  doi: 10.1051/0004-6361/201731498
– volume-title: Gravitational Lensing: Strong, Weak and Micro: Saas-Fee Advanced Course 33
  year: 2006
  ident: PhysRevD.104.103031Cc80R1
  doi: 10.1007/978-3-540-30310-7
– ident: PhysRevD.104.103031Cc83R1
  doi: 10.1093/mnras/stz273
– ident: PhysRevD.104.103031Cc54R1
  doi: 10.3847/1538-4357/aad4a7
– ident: PhysRevD.104.103031Cc88R1
  doi: 10.1093/mnras/stab267
– ident: PhysRevD.104.103031Cc81R1
  doi: 10.1093/mnrasl/sly024
– ident: PhysRevD.104.103031Cc84R1
  doi: 10.1093/mnras/staa3954
– ident: PhysRevD.104.103031Cc13R1
  doi: 10.1093/mnras/stw3385
– ident: PhysRevD.104.103031Cc37R1
  doi: 10.1007/s00159-018-0113-1
– ident: PhysRevD.104.103031Cc39R1
  doi: 10.1093/mnras/stz2511
– ident: PhysRevD.104.103031Cc55R1
  doi: 10.1093/mnras/stu742
– ident: PhysRevD.104.103031Cc17R1
  doi: 10.1093/mnras/stu1284
– ident: PhysRevD.104.103031Cc36R1
  doi: 10.1093/mnras/stx522
– ident: PhysRevD.104.103031Cc3R1
  doi: 10.1088/1475-7516/2012/03/016
– ident: PhysRevD.104.103031Cc60R1
  doi: 10.1086/519237
– ident: PhysRevD.104.103031Cc45R1
  doi: 10.1088/1475-7516/2019/07/036
– ident: PhysRevD.104.103031Cc42R1
  doi: 10.1088/1475-7516/2021/01/024
– ident: PhysRevD.104.103031Cc86R1
  doi: 10.1093/mnras/stx2253
– ident: PhysRevD.104.103031Cc38R1
  doi: 10.1103/PhysRevX.9.031020
– ident: PhysRevD.104.103031Cc5R1
  doi: 10.1088/0004-637X/765/1/24
– ident: PhysRevD.104.103031Cc85R1
  doi: 10.1093/mnras/stab2173
– ident: PhysRevD.104.103031Cc43R1
  doi: 10.1103/PhysRevLett.88.101301
– ident: PhysRevD.104.103031Cc29R1
  doi: 10.1016/j.physrep.2017.11.004
– ident: PhysRevD.104.103031Cc68R1
  doi: 10.1093/mnras/stz1318
– ident: PhysRevD.104.103031Cc79R1
  doi: 10.1086/164709
– ident: PhysRevD.104.103031Cc51R1
  doi: 10.1086/304888
– ident: PhysRevD.104.103031Cc56R1
  doi: 10.1093/mnras/sts261
– ident: PhysRevD.104.103031Cc75R1
  doi: 10.1093/mnras/stab506
– ident: PhysRevD.104.103031Cc12R1
  doi: 10.1088/0004-637X/800/1/38
– ident: PhysRevD.104.103031Cc25R1
  doi: 10.1093/mnras/stab1392
– ident: PhysRevD.104.103031Cc35R1
  doi: 10.1103/PhysRevLett.119.111102
– ident: PhysRevD.104.103031Cc8R1
  doi: 10.1046/j.1365-8711.1998.01319.x
– ident: PhysRevD.104.103031Cc26R1
  doi: 10.1093/mnrasl/slab028
– ident: PhysRevD.104.103031Cc33R1
  doi: 10.1093/mnrasl/sls053
– ident: PhysRevD.104.103031Cc22R1
  doi: 10.3847/1538-4357/abf9a3
– ident: PhysRevD.104.103031Cc2R1
  doi: 10.1007/s00159-011-0047-3
– ident: PhysRevD.104.103031Cc64R1
  doi: 10.1093/mnras/stt984
– ident: PhysRevD.104.103031Cc30R1
  doi: 10.1086/318417
– ident: PhysRevD.104.103031Cc18R1
  doi: 10.1093/mnras/stab2247
– ident: PhysRevD.104.103031Cc34R1
  doi: 10.1046/j.1365-8711.2000.03555.x
– ident: PhysRevD.104.103031Cc71R1
  doi: 10.1093/mnras/sty1516
– ident: PhysRevD.104.103031Cc76R1
  doi: 10.1093/mnras/stab1725
– ident: PhysRevD.104.103031Cc46R1
  doi: 10.3847/2041-8213/ac04b0
– ident: PhysRevD.104.103031Cc67R1
  doi: 10.1093/mnras/sty084
– ident: PhysRevD.104.103031Cc69R1
  doi: 10.1093/mnras/stu1536
– ident: PhysRevD.104.103031Cc59R1
  doi: 10.1086/505696
– ident: PhysRevD.104.103031Cc78R1
  doi: 10.1007/s11214-013-9981-x
– ident: PhysRevD.104.103031Cc57R1
  doi: 10.1086/498884
– ident: PhysRevD.104.103031Cc9R1
  doi: 10.1086/340303
– ident: PhysRevD.104.103031Cc14R1
  doi: 10.1093/mnras/stx1400
– ident: PhysRevD.104.103031Cc11R1
  doi: 10.1111/j.1365-2966.2009.15230.x
– ident: PhysRevD.104.103031Cc32R1
  doi: 10.1093/mnras/sts514
– ident: PhysRevD.104.103031Cc82R1
  doi: 10.1093/mnras/stx1043
– ident: PhysRevD.104.103031Cc16R1
  doi: 10.1093/mnras/stab2209
– ident: PhysRevD.104.103031Cc47R1
  doi: 10.1086/339038
– volume-title: Gravitational Lenses
  year: 1992
  ident: PhysRevD.104.103031Cc1R1
– ident: PhysRevD.104.103031Cc41R1
  doi: 10.1103/PhysRevLett.125.111105
– ident: PhysRevD.104.103031Cc52R1
  doi: 10.1051/0004-6361/201935974
– ident: PhysRevD.104.103031Cc31R1
  doi: 10.1111/j.1365-2966.2012.21182.x
– ident: PhysRevD.104.103031Cc77R1
  doi: 10.1051/0004-6361/201321591
– ident: PhysRevD.104.103031Cc72R1
  doi: 10.1103/PhysRevD.101.063009
– ident: PhysRevD.104.103031Cc58R1
  doi: 10.1086/500124
– ident: PhysRevD.104.103031Cc66R1
  doi: 10.1093/mnras/stx2956
– ident: PhysRevD.104.103031Cc4R1
  doi: 10.1088/0004-637X/806/1/4
– ident: PhysRevD.104.103031Cc23R1
  doi: 10.1126/science.aax5164
– ident: PhysRevD.104.103031Cc74R1
  doi: 10.1088/1475-7516/2019/12/010
– ident: PhysRevD.104.103031Cc6R1
  doi: 10.3847/1538-4357/aa9845
– ident: PhysRevD.104.103031Cc44R1
  doi: 10.1088/0004-637X/804/2/131
– ident: PhysRevD.104.103031Cc49R1
  doi: 10.1103/PhysRevLett.123.121102
– ident: PhysRevD.104.103031Cc61R1
  doi: 10.1093/mnras/stz383
– ident: PhysRevD.104.103031Cc48R1
  doi: 10.1111/j.1365-2966.2011.18684.x
– ident: PhysRevD.104.103031Cc15R1
  doi: 10.1093/mnrasl/slz173
– ident: PhysRevD.104.103031Cc24R1
  doi: 10.3847/2041-8205/827/1/L5
– ident: PhysRevD.104.103031Cc70R1
  doi: 10.3847/1538-4357/aa9710
– ident: PhysRevD.104.103031Cc87R1
  doi: 10.1093/mnras/stz2613
– ident: PhysRevD.104.103031Cc40R1
  doi: 10.1088/1475-7516/2020/06/027
– ident: PhysRevD.104.103031Cc73R1
  doi: 10.1103/PhysRevLett.124.141102
SSID ssj0001609711
Score 2.6126044
Snippet Recently, Meneghetti et al. reported an excess of small-scale gravitational lenses in galaxy clusters. We study its implications for self-interacting dark...
SourceID osti
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
SubjectTerms ASTRONOMY AND ASTROPHYSICS
ATOMIC AND MOLECULAR PHYSICS
Dark matter
Title Self-interacting dark matter and small-scale gravitational lenses in galaxy clusters
URI https://www.osti.gov/servlets/purl/1979953
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 2470-0029
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001609711
  issn: 2470-0010
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKAYkL4imWBeQDt-AlcRK7Pi4vIYFWFVvQcoocx0YV2XTVdKvy7xm_0hatVnDgElVOGkfzjTwz9sw3CL00Qsuy0YKouqGkKBpBpGSKlEJQnmpZeDKdb5_5ycnk7ExMR6NPsRZm3fKum2w24uK_Qg1jALYtnf0HuIeXwgD8BtDhCrDD9a-AP9WtIZYFwtU_dT-SRi5_JueOR9MdFfTnsm1JD-DoxHYfCizdgBVYoN4laCVgN-TmV6LaS0uk0O-6sNOIrK96OdrmDH8Pe8-gSToYRNfyy5k3OSdvFrt7DDQLxXaDVsTDo2GGmFIKXvDx9DRuWrhlixa2lU0aklX17lh4LK67vu9wVLD06gU9tcQSdt4vev3OnkhbmoA0WI59puzMHlGW-Q10k3LQNRcLH2033Jily7IB-PCFgYUKXvj6ihn2PJXxAlbcHc9jdg_dDSEDPvZQ30cj3T1At72Q-odo9ifg2AKOPeAYAMc7gOM9wLEHHM877AHHEfBH6OuH97O3H0nolUEURNwrooQpDKcQL2V5XgjTcFPXJhUTljcNY3WWsZpxo8uSmkY3JmUTmcnUsIZTxRXLH6Nxt-j0E4RtDyDKCy1YKQuRK8lzKUuuwVHXjNH6ANEol0qFL7b9TNrKBZRpXkVhwkBReWEeoFfDny48j8r1jx9agVfgBlouY2WTvtSqCgg_vfbuIbqz1eFnaLxaXurn6JZar-b98oVTit95c3Hd
linkProvider SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-interacting+dark+matter+and+small-scale+gravitational+lenses+in+galaxy+clusters&rft.jtitle=Physical+review.+D&rft.au=Yang%2C+Daneng&rft.au=Yu%2C+Hai-Bo&rft.date=2021-11-01&rft.pub=American+Physical+Society+%28APS%29&rft.issn=2470-0010&rft.eissn=2470-0029&rft.volume=104&rft.issue=10&rft_id=info:doi/10.1103%2FPhysRevD.104.103031&rft.externalDocID=1979953
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-0010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-0010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-0010&client=summon