Observer‐Based Model‐Free Iterative Learning of Fault‐Tolerant Control for Subway Train Velocity Tracking Systems

This article proposes a model‐free adaptive iterative learning fault‐tolerant control (MFAilFTC) scheme for subway train velocity tracking, with actuator faults and over‐velocity constrains. First, the train dynamics is transformed into an iteration‐related dynamic linearization data model. Compared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control
Hauptverfasser: Wang, Rongrong, Chi, Ronghu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 15.08.2025
ISSN:1049-8923, 1099-1239
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article proposes a model‐free adaptive iterative learning fault‐tolerant control (MFAilFTC) scheme for subway train velocity tracking, with actuator faults and over‐velocity constrains. First, the train dynamics is transformed into an iteration‐related dynamic linearization data model. Compared to previous results, the learning strategy we propose shows enhanced performance in trajectory tracking by utilizing the partial form dynamic linearization technique, which significantly accelerates the iteration process. Next, to deal with non‐repetitive uncertainties, we present an iterative output observer to estimate inaccurate outputs ruined by non‐repetitive uncertainties. With the introduction of iterative learning observer (ILO), the tracking accuracy and the ability to suppress non‐repetitive uncertainties are improved. Additionally, the inclusion of the tracking error integral term in the ILO enhances the convergence speed. An over‐velocity constrains mechanism is developed to ensure that the train operates within a safe velocity range. Through rigorous mathematical analysis, it is demonstrated that the MFAilFTC method with the over‐velocity constrains mechanism ensures the train velocity tracking error converges along the iteration axis, indicating safe and reliable operation. Simulation results further validate the effectiveness of the proposed method.
AbstractList This article proposes a model‐free adaptive iterative learning fault‐tolerant control (MFAilFTC) scheme for subway train velocity tracking, with actuator faults and over‐velocity constrains. First, the train dynamics is transformed into an iteration‐related dynamic linearization data model. Compared to previous results, the learning strategy we propose shows enhanced performance in trajectory tracking by utilizing the partial form dynamic linearization technique, which significantly accelerates the iteration process. Next, to deal with non‐repetitive uncertainties, we present an iterative output observer to estimate inaccurate outputs ruined by non‐repetitive uncertainties. With the introduction of iterative learning observer (ILO), the tracking accuracy and the ability to suppress non‐repetitive uncertainties are improved. Additionally, the inclusion of the tracking error integral term in the ILO enhances the convergence speed. An over‐velocity constrains mechanism is developed to ensure that the train operates within a safe velocity range. Through rigorous mathematical analysis, it is demonstrated that the MFAilFTC method with the over‐velocity constrains mechanism ensures the train velocity tracking error converges along the iteration axis, indicating safe and reliable operation. Simulation results further validate the effectiveness of the proposed method.
Author Chi, Ronghu
Wang, Rongrong
Author_xml – sequence: 1
  givenname: Rongrong
  surname: Wang
  fullname: Wang, Rongrong
  organization: College of Electrical Engineering and Automation Shandong University of Science and Technology Qingdao China
– sequence: 2
  givenname: Ronghu
  orcidid: 0000-0002-1325-7863
  surname: Chi
  fullname: Chi, Ronghu
  organization: College of Automation and Electronic Engineering Qingdao University of Science and Technology Qingdao China
BookMark eNotkM9OAjEQhxuDiYAefINePSz2z4bdHpWIkqzhAHrdzLazZnVpTVsg3HwEn9EnsaDJJDNffjNz-EZkYJ1FQq45m3DGxK23elIwLvMzMuRMqYwLqQbHOVdZqYS8IKMQ3hlLmciHZL9sAvod-p-v73sIaOizM9gnmntEuojoIXY7pBWCt519o66lc9j2Ma2sXZ9iG-nM2ehdT1vn6Wrb7OFA1x46S1-xd7qLJ9Qfx_PVIUTchEty3kIf8Oq_j8nL_GE9e8qq5eNidldlmisesxKgaYQqEsmy5QqFNLLIpYAGOZrGTJWYFjovoNSyFKkEA2g5n3JlmDByTG7-_mrvQvDY1p--24A_1JzVR2N1MlafjMlf-HVk4g
Cites_doi 10.1109/TITS.2020.2970000
10.1002/asjc.2010
10.1109/TSMC.2019.2957299
10.1109/TIV.2023.3305497
10.1109/TIV.2024.3379942
10.1109/TFUZZ.2020.2999958
10.1109/TASE.2012.2216261
10.1016/j.jprocont.2012.05.016
10.1109/CDC.2001.980906
10.1115/1.2719773
10.1016/j.ast.2020.105706
10.1109/TCYB.2019.2905427
10.1109/TITS.2020.3046416
10.1109/TASE.2014.2371816
10.1109/TME.1964.4323124
10.1109/TITS.2021.3106653
10.1016/j.automatica.2008.07.011
10.1109/TNNLS.2020.3027651
10.1109/TVT.2022.3174864
10.1109/SYSTOL.2010.5676066
10.1002/acs.936
10.1002/rnc.6287
10.1360/aas-007-1061
10.1109/TASE.2020.3041952
10.1109/TVT.2021.3133858
10.1016/j.jprocont.2017.08.013
10.1002/rob.4620010203
10.1109/TCYB.2020.2986006
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/rnc.70134
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
ExternalDocumentID 10_1002_rnc_70134
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O8X
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
ID FETCH-LOGICAL-c191t-8aabb297c1938f19e23d37432abe1edbd69267c47a8c38238220aaf11619d02d3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001550219600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1049-8923
IngestDate Sat Nov 29 07:37:32 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c191t-8aabb297c1938f19e23d37432abe1edbd69267c47a8c38238220aaf11619d02d3
ORCID 0000-0002-1325-7863
ParticipantIDs crossref_primary_10_1002_rnc_70134
PublicationCentury 2000
PublicationDate 2025-08-15
PublicationDateYYYYMMDD 2025-08-15
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-15
  day: 15
PublicationDecade 2020
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2025
References Chen Y. (e_1_2_11_3_1) 2020; 19
Yu Q. (e_1_2_11_10_1) 2020; 29
Davis W. J. (e_1_2_11_28_1) 1926
Luenberger D. G. (e_1_2_11_30_1) 1964; 8
Ye Y. (e_1_2_11_7_1) 2009; 45
Li Z. (e_1_2_11_11_1) 2021; 23
Liu G. (e_1_2_11_12_1) 2020; 52
Baldi P. (e_1_2_11_27_1) 2010
Chen W. (e_1_2_11_19_1) 2001
Wang X. (e_1_2_11_18_1) 2019; 51
Wang D. (e_1_2_11_26_1) 2007; 21
Chen W. (e_1_2_11_20_1) 2007; 129
Wang Q. (e_1_2_11_22_1) 2022; 71
Ji H. (e_1_2_11_33_1) 2015; 13
KJ A. (e_1_2_11_31_1) 1995
Shang M. (e_1_2_11_2_1) 2021; 71
Wang L. (e_1_2_11_16_1) 2017; 59
Hay W. W. (e_1_2_11_29_1) 1991
Chen J. (e_1_2_11_15_1) 2020; 32
Novak H. (e_1_2_11_5_1) 2021; 23
Arimoto S. (e_1_2_11_6_1) 1984; 1
Wang L. (e_1_2_11_8_1) 2012; 22
Zhang Z. (e_1_2_11_21_1) 2019; 21
Liu G. (e_1_2_11_13_1) 2020; 22
Huang L. (e_1_2_11_32_1) 1984
Hui H. (e_1_2_11_17_1) 2020; 98
Tan W. (e_1_2_11_24_1) 2024
Sun H. (e_1_2_11_14_1) 2012; 10
Chi R.‐H. (e_1_2_11_23_1) 2007; 33
Liu G. (e_1_2_11_9_1) 2019; 51
Li F. (e_1_2_11_4_1) 2022; 32
Liu H. (e_1_2_11_25_1) 2023; 9
References_xml – volume: 22
  start-page: 1388
  issue: 3
  year: 2020
  ident: e_1_2_11_13_1
  article-title: Adaptive Iterative Learning Control for Subway Trains Using Multiple‐Point‐Mass Dynamic Model Under Speed Constraint
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2020.2970000
– volume: 21
  start-page: 43
  issue: 1
  year: 2019
  ident: e_1_2_11_21_1
  article-title: Third‐Order Sliding Mode Fault‐Tolerant Control for Satellites Based on Iterative Learning Observer
  publication-title: Asian Journal of Control
  doi: 10.1002/asjc.2010
– volume: 51
  start-page: 5785
  issue: 9
  year: 2019
  ident: e_1_2_11_9_1
  article-title: RBFNN‐Based Adaptive Iterative Learning Fault‐Tolerant Control for Subway Trains With Actuator Faults and Speed Constraint
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2019.2957299
– volume: 9
  start-page: 2160
  issue: 1
  year: 2023
  ident: e_1_2_11_25_1
  article-title: An Improved Data‐Driven Iterative Learning Secure Control for Intelligent Marine Vehicles With dos Attacks
  publication-title: IEEE Transactions on Intelligent Vehicles
  doi: 10.1109/TIV.2023.3305497
– volume-title: Linear Algebra in System and Control Theory
  year: 1984
  ident: e_1_2_11_32_1
– start-page: 1
  year: 2024
  ident: e_1_2_11_24_1
  article-title: Robust Data‐Driven Iterative Learning Control for High‐Speed Train With Aperiodic dos Attacks and Communication Delays
  publication-title: IEEE Transactions on Intelligent Vehicles
  doi: 10.1109/TIV.2024.3379942
– volume: 29
  start-page: 2408
  issue: 8
  year: 2020
  ident: e_1_2_11_10_1
  article-title: Adaptive Fuzzy Iterative Learning Control for High‐Speed Trains With Both Randomly Varying Operation Lengths and System Constraints
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2020.2999958
– volume: 10
  start-page: 323
  issue: 2
  year: 2012
  ident: e_1_2_11_14_1
  article-title: Coordinated Iterative Learning Control Schemes for Train Trajectory Tracking With Overspeed Protection
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2012.2216261
– volume: 22
  start-page: 1273
  issue: 7
  year: 2012
  ident: e_1_2_11_8_1
  article-title: Robust Delay Dependent Iterative Learning Fault‐Tolerant Control for Batch Processes With State Delay and Actuator Failures
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2012.05.016
– start-page: 4469
  volume-title: Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228)
  year: 2001
  ident: e_1_2_11_19_1
  doi: 10.1109/CDC.2001.980906
– volume: 129
  start-page: 352
  year: 2007
  ident: e_1_2_11_20_1
  article-title: Observer‐Based Fault Diagnosis of Satellite Systems Subject to Time‐Varying Thruster Faults
  publication-title: Journal of Dynamic Systems, Measurement, and Control
  doi: 10.1115/1.2719773
– volume-title: Adaptive Control. Addison‐Wesley
  year: 1995
  ident: e_1_2_11_31_1
– volume: 98
  year: 2020
  ident: e_1_2_11_17_1
  article-title: Active Fault‐Tolerant Attitude Tracking Control With Adaptive Gain for Spacecrafts
  publication-title: Aerospace Science and Technology
  doi: 10.1016/j.ast.2020.105706
– volume: 51
  start-page: 1216
  issue: 3
  year: 2019
  ident: e_1_2_11_18_1
  article-title: Fault‐Tolerant Attitude Control for Rigid Spacecraft Without Angular Velocity Measurements
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2019.2905427
– volume: 23
  start-page: 5044
  issue: 6
  year: 2021
  ident: e_1_2_11_5_1
  article-title: Energy‐Efficient Model Predictive Train Traction Control With Incorporated Traction System Efficiency
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2020.3046416
– volume: 13
  start-page: 260
  issue: 1
  year: 2015
  ident: e_1_2_11_33_1
  article-title: Adaptive Iterative Learning Control for High‐Speed Trains With Unknown Speed Delays and Input Saturations
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2014.2371816
– volume-title: The Tractive Resistance of Electric Locomotives and Cars
  year: 1926
  ident: e_1_2_11_28_1
– volume: 8
  start-page: 74
  issue: 2
  year: 1964
  ident: e_1_2_11_30_1
  article-title: Observing the State of a Linear System
  publication-title: IEEE Transactions on Military Electronics
  doi: 10.1109/TME.1964.4323124
– volume: 23
  start-page: 11720
  issue: 8
  year: 2021
  ident: e_1_2_11_11_1
  article-title: Constrained Spatial Adaptive Iterative Learning Control for Trajectory Tracking of High Speed Train
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2021.3106653
– volume: 45
  start-page: 257
  issue: 1
  year: 2009
  ident: e_1_2_11_7_1
  article-title: All‐Pass Filtering in Iterative Learning Control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2008.07.011
– volume: 32
  start-page: 5232
  issue: 11
  year: 2020
  ident: e_1_2_11_15_1
  article-title: Iterative Learning Model‐Free Control for Networked Systems With Dual‐Direction Data Dropouts and Actuator Faults
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3027651
– volume: 71
  start-page: 8164
  issue: 8
  year: 2022
  ident: e_1_2_11_22_1
  article-title: Cooperative MFAILC for Multiple Subway Trains With Actuator Faults and Actuator Saturation
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2022.3174864
– start-page: 143
  volume-title: Conference on Control and Fault‐Tolerant Systems (SysTol)
  year: 2010
  ident: e_1_2_11_27_1
  doi: 10.1109/SYSTOL.2010.5676066
– volume: 21
  start-page: 31
  issue: 1
  year: 2007
  ident: e_1_2_11_26_1
  article-title: Adaptive Unknown Input Observer Approach for Aircraft Actuator Fault Detection and Isolation
  publication-title: International Journal of Adaptive Control and Signal Processing
  doi: 10.1002/acs.936
– volume: 32
  start-page: 8486
  issue: 15
  year: 2022
  ident: e_1_2_11_4_1
  article-title: Iterative Fault Estimation and Fault‐Tolerant Control for a Class of Nonlinear Variant Time‐Delay Systems
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.6287
– volume-title: Railroad Engineering
  year: 1991
  ident: e_1_2_11_29_1
– volume: 33
  start-page: 1061
  issue: 10
  year: 2007
  ident: e_1_2_11_23_1
  article-title: Dual‐Stage Optimal Iterative Learning Control for Nonlinear Non‐Affine Discrete‐Time Systems
  publication-title: Acta Automatica Sinica
  doi: 10.1360/aas-007-1061
– volume: 19
  start-page: 113
  issue: 1
  year: 2020
  ident: e_1_2_11_3_1
  article-title: A Novel Iterative Learning Approach for Tracking Control of High‐Speed Trains Subject to Unknown Time‐Varying Delay
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2020.3041952
– volume: 71
  start-page: 1319
  issue: 2
  year: 2021
  ident: e_1_2_11_2_1
  article-title: Energy‐Saving Operation Synergy for Multiple Metro‐Trains Using Map‐Reduce Parallel Optimization
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2021.3133858
– volume: 59
  start-page: 59
  year: 2017
  ident: e_1_2_11_16_1
  article-title: Iterative Learning Fault‐Tolerant Control for Injection Molding Processes Against Actuator Faults
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2017.08.013
– volume: 1
  start-page: 123
  issue: 2
  year: 1984
  ident: e_1_2_11_6_1
  article-title: Bettering Operation of Robots by Learning
  publication-title: Journal of Robotic Systems
  doi: 10.1002/rob.4620010203
– volume: 52
  start-page: 1098
  issue: 2
  year: 2020
  ident: e_1_2_11_12_1
  article-title: Cooperative Adaptive Iterative Learning Fault‐Tolerant Control Scheme for Multiple Subway Trains
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.2986006
SSID ssj0009924
Score 2.4384875
SecondaryResourceType online_first
Snippet This article proposes a model‐free adaptive iterative learning fault‐tolerant control (MFAilFTC) scheme for subway train velocity tracking, with actuator...
SourceID crossref
SourceType Index Database
Title Observer‐Based Model‐Free Iterative Learning of Fault‐Tolerant Control for Subway Train Velocity Tracking Systems
WOSCitedRecordID wos001550219600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1239
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009924
  issn: 1049-8923
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAM9oPISlIJWiBsy2Gsnu3uE0ohDVFCVot6ifZkWIrty7bZHfgK_kV_C7Mu26KUcuFjZ0TqJ8k1mZscz3yD0ms1niqW6TGRBiwT8bZFIxbJEkLJMiVYk044yf0kPD9nJCf8ymXSxF-ZyQ6uKXV_z8_8KNcgAbNs6-w9w928KAngNoMMVYIfrrYD_LG2iFZCIZQwfwFFpN_Rs08sWjTE2TR94v5cxQQKh40J0m7bfuKo3sKlqbWugq2m3ZYlgba5s-4gdL_HmqwF_aGN5WKofjuB7xIL-faiUHxKPI7qKppbdha9yrzxrh2hi_fyQ7PcG6aiuvjV1cLWuJOEsik-7cfqCzGw-1jdwBosLR5SEcd90_NYEGbczGjzL0Q0b7zljGzCfFOLXYnBk8eH9X_6trzr0DM1kDbeu3a130BahM86maOvj0eJ4ObA1cz8NOX63SEmVknf9544CmVFEstpB98NRAr_3KvAATUz1EG2PCCYfoauoDL9__nJqgJ0awMoqAO4VAEcFwHWJnQLAlgg9DtBjgB576LGDHkfocYQeB-gfo-PFwWr_UxJGbSQKDuxtwoSQknAKq5yVGTck1zkEl0RIkxkt9ZyTOVUFFUzZJ8cQVqZClBmcF7iG_3T-BE1BS8xThOdSgZGHwLwwsihMKSxpv6YzKvJU0DJ_hl7F32197hlV1jeQ2b3Npufo3qBRe2jaNp15ge6qy_bsonkZMP0DmnJwRA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observer%E2%80%90Based+Model%E2%80%90Free+Iterative+Learning+of+Fault%E2%80%90Tolerant+Control+for+Subway+Train+Velocity+Tracking+Systems&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Wang%2C+Rongrong&rft.au=Chi%2C+Ronghu&rft.date=2025-08-15&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002%2Frnc.70134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rnc_70134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon