RePaint High-Density Surface Electromyography Signal Using Denoising Diffusion Probabilistic Model

Objective: High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss due to poor electrode contact and channel corruption remains a significant challenge, limiting the reliability and practical applica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical engineering Jg. PP; S. 1 - 12
Hauptverfasser: Zhao, Yihui, Liao, Jiawei, Fang, Xia, Wang, Hai, Jiang, Ning, He, Jiayuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 02.09.2025
Schlagworte:
ISSN:0018-9294, 1558-2531, 1558-2531
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Objective: High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss due to poor electrode contact and channel corruption remains a significant challenge, limiting the reliability and practical applications of HD-sEMG signals. Conventional interpolation methods fail to effectively reconstruct corrupted signals, especially when multiple adjacent channels are affected. Methods: This paper proposes a novel HD-sEMG signal reconstruction approach based on the denoising diffusion probabilistic model (DDPM) with a repaint strategy. By leveraging a U-Net structure with spatiotemporal embedding modules that effectively learn the spatial and temporal characteristics of HD-sEMG signals, the proposed method achieves high-fidelity signal reconstruction without requiring prior knowledge of corruption patterns. Results: Experimental evaluations are conducted on 6 corruption patterns with varying ratios (from 12.5% to 50%) using self-collected datasets (including an amputated subject) and a benchmark dataset. Results demonstrate that the proposed approach consistently outperforms interpolation methods (linear: 0.038<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.033, cubic: 0.038<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.032), generative adversarial net (GAN) (0.049<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.041), and variational autoencoder (VAE) (0.068<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.046) in terms of <inline-formula><tex-math notation="LaTeX">nRMSE</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX">p < 0.001</tex-math></inline-formula>), achieving the lowest error of 0.027<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.027 averaged across all corruption ratios. For <inline-formula><tex-math notation="LaTeX">PSNR</tex-math></inline-formula>, the proposed approach achieves the highest mean value (35.81<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 17.95dB) compared to interpolation methods (linear: 33.89<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>26.85, cubic: 33.88<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 26.88dB), GAN (31.08<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 19.14dB), and VAE (26.98<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 18.94dB) (<inline-formula><tex-math notation="LaTeX">p < 0.001</tex-math></inline-formula>). Furthermore, the proposed method maintained robust classification accuracy, achieving statistically equivalent performance to ground truth at the lower corruption ratio. Significance: The proposed HD-sEMG signal reconstruction approach offers a new solution for enhancing the fidelity and reliability of HD-sEMG signal acquisition.
AbstractList High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss due to poor electrode contact and channel corruption remains a significant challenge, limiting the reliability and practical applications of HD-sEMG signals. Conventional interpolation methods fail to effectively reconstruct corrupted signals, especially when multiple adjacent channels are affected. This paper proposes a novel HD-sEMG signal reconstruction approach based on the denoising diffusion probabilistic model (DDPM) with a repaint strategy. By leveraging a U-Net structure with spatiotemporal embedding modules that effectively learn the spatial and temporal characteristics of HD-sEMG signals, the proposed method achieves high-fidelity signal reconstruction without requiring prior knowledge of corruption patterns. Experimental evaluations are conducted on 6 corruption patterns with varying ratios (from 12.5% to 50%) using self-collected datasets (including an amputated subject) and a benchmark dataset. Results demonstrate that the proposed approach consistently outperforms interpolation methods (linear: 0.038$\pm$0.033, cubic: 0.038$\pm$0.032), generative adversarial net (GAN) (0.049$\pm$0.041), and variational autoencoder (VAE) (0.068$\pm$0.046) in terms of $nRMSE$ ($p < 0.001$), achieving the lowest error of 0.027$\pm$0.027 averaged across all corruption ratios. For $PSNR$, the proposed approach achieves the highest mean value (35.81$\pm$ 17.95dB) compared to interpolation methods (linear: 33.89$\pm$26.85, cubic: 33.88$\pm$ 26.88dB), GAN (31.08$\pm$ 19.14dB), and VAE (26.98$\pm$ 18.94dB) ($p < 0.001$). Furthermore, the proposed method maintained robust classification accuracy, achieving statistically equivalent performance to ground truth at the lower corruption ratio. The proposed HD-sEMG signal reconstruction approach offers a new solution for enhancing the fidelity and reliability of HD-sEMG signal acquisition.
Objective: High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss due to poor electrode contact and channel corruption remains a significant challenge, limiting the reliability and practical applications of HD-sEMG signals. Conventional interpolation methods fail to effectively reconstruct corrupted signals, especially when multiple adjacent channels are affected. Methods: This paper proposes a novel HD-sEMG signal reconstruction approach based on the denoising diffusion probabilistic model (DDPM) with a repaint strategy. By leveraging a U-Net structure with spatiotemporal embedding modules that effectively learn the spatial and temporal characteristics of HD-sEMG signals, the proposed method achieves high-fidelity signal reconstruction without requiring prior knowledge of corruption patterns. Results: Experimental evaluations are conducted on 6 corruption patterns with varying ratios (from 12.5% to 50%) using self-collected datasets (including an amputated subject) and a benchmark dataset. Results demonstrate that the proposed approach consistently outperforms interpolation methods (linear: 0.038<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.033, cubic: 0.038<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.032), generative adversarial net (GAN) (0.049<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.041), and variational autoencoder (VAE) (0.068<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.046) in terms of <inline-formula><tex-math notation="LaTeX">nRMSE</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX">p < 0.001</tex-math></inline-formula>), achieving the lowest error of 0.027<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.027 averaged across all corruption ratios. For <inline-formula><tex-math notation="LaTeX">PSNR</tex-math></inline-formula>, the proposed approach achieves the highest mean value (35.81<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 17.95dB) compared to interpolation methods (linear: 33.89<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>26.85, cubic: 33.88<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 26.88dB), GAN (31.08<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 19.14dB), and VAE (26.98<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 18.94dB) (<inline-formula><tex-math notation="LaTeX">p < 0.001</tex-math></inline-formula>). Furthermore, the proposed method maintained robust classification accuracy, achieving statistically equivalent performance to ground truth at the lower corruption ratio. Significance: The proposed HD-sEMG signal reconstruction approach offers a new solution for enhancing the fidelity and reliability of HD-sEMG signal acquisition.
High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss due to poor electrode contact and channel corruption remains a significant challenge, limiting the reliability and practical applications of HD-sEMG signals. Conventional interpolation methods fail to effectively reconstruct corrupted signals, especially when multiple adjacent channels are affected.OBJECTIVEHigh-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss due to poor electrode contact and channel corruption remains a significant challenge, limiting the reliability and practical applications of HD-sEMG signals. Conventional interpolation methods fail to effectively reconstruct corrupted signals, especially when multiple adjacent channels are affected.This paper proposes a novel HD-sEMG signal reconstruction approach based on the denoising diffusion probabilistic model (DDPM) with a repaint strategy. By leveraging a U-Net structure with spatiotemporal embedding modules that effectively learn the spatial and temporal characteristics of HD-sEMG signals, the proposed method achieves high-fidelity signal reconstruction without requiring prior knowledge of corruption patterns.METHODSThis paper proposes a novel HD-sEMG signal reconstruction approach based on the denoising diffusion probabilistic model (DDPM) with a repaint strategy. By leveraging a U-Net structure with spatiotemporal embedding modules that effectively learn the spatial and temporal characteristics of HD-sEMG signals, the proposed method achieves high-fidelity signal reconstruction without requiring prior knowledge of corruption patterns.Experimental evaluations are conducted on 6 corruption patterns with varying ratios (from 12.5% to 50%) using self-collected datasets (including an amputated subject) and a benchmark dataset. Results demonstrate that the proposed approach consistently outperforms interpolation methods (linear: 0.038$\pm$0.033, cubic: 0.038$\pm$0.032), generative adversarial net (GAN) (0.049$\pm$0.041), and variational autoencoder (VAE) (0.068$\pm$0.046) in terms of $nRMSE$ ($p < 0.001$), achieving the lowest error of 0.027$\pm$0.027 averaged across all corruption ratios. For $PSNR$, the proposed approach achieves the highest mean value (35.81$\pm$ 17.95dB) compared to interpolation methods (linear: 33.89$\pm$26.85, cubic: 33.88$\pm$ 26.88dB), GAN (31.08$\pm$ 19.14dB), and VAE (26.98$\pm$ 18.94dB) ($p < 0.001$). Furthermore, the proposed method maintained robust classification accuracy, achieving statistically equivalent performance to ground truth at the lower corruption ratio.RESULTSExperimental evaluations are conducted on 6 corruption patterns with varying ratios (from 12.5% to 50%) using self-collected datasets (including an amputated subject) and a benchmark dataset. Results demonstrate that the proposed approach consistently outperforms interpolation methods (linear: 0.038$\pm$0.033, cubic: 0.038$\pm$0.032), generative adversarial net (GAN) (0.049$\pm$0.041), and variational autoencoder (VAE) (0.068$\pm$0.046) in terms of $nRMSE$ ($p < 0.001$), achieving the lowest error of 0.027$\pm$0.027 averaged across all corruption ratios. For $PSNR$, the proposed approach achieves the highest mean value (35.81$\pm$ 17.95dB) compared to interpolation methods (linear: 33.89$\pm$26.85, cubic: 33.88$\pm$ 26.88dB), GAN (31.08$\pm$ 19.14dB), and VAE (26.98$\pm$ 18.94dB) ($p < 0.001$). Furthermore, the proposed method maintained robust classification accuracy, achieving statistically equivalent performance to ground truth at the lower corruption ratio.The proposed HD-sEMG signal reconstruction approach offers a new solution for enhancing the fidelity and reliability of HD-sEMG signal acquisition.SIGNIFICANCEThe proposed HD-sEMG signal reconstruction approach offers a new solution for enhancing the fidelity and reliability of HD-sEMG signal acquisition.
Author Liao, Jiawei
Wang, Hai
Jiang, Ning
He, Jiayuan
Fang, Xia
Zhao, Yihui
Author_xml – sequence: 1
  givenname: Yihui
  surname: Zhao
  fullname: Zhao, Yihui
  email: y_zhao1994@wchscu.edu.cn
  organization: National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– sequence: 2
  givenname: Jiawei
  surname: Liao
  fullname: Liao, Jiawei
  email: liaojiawei@stu.scu.edu.sn
  organization: National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– sequence: 3
  givenname: Xia
  surname: Fang
  fullname: Fang, Xia
  email: fangxia@scu.edu.cn
  organization: National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– sequence: 4
  givenname: Hai
  surname: Wang
  fullname: Wang, Hai
  email: wanghai_huaxi@stu.scu.edu.cn
  organization: National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– sequence: 5
  givenname: Ning
  surname: Jiang
  fullname: Jiang, Ning
  email: jiangning21@wchscu.cn
  organization: National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– sequence: 6
  givenname: Jiayuan
  surname: He
  fullname: He, Jiayuan
  email: jiayuan.he@wchscu.cn
  organization: National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40892666$$D View this record in MEDLINE/PubMed
BookMark eNpFkEtPwzAMgCMEgvH4AUgI9cilI86jTY4wxkNiYuJxrpI0HUFdM5L2sH9Ppg2QD7blz5b1HaP9zncWoXPAYwAsr99vZ9MxwYSPaYEZJ-UeGgHnIiecwj4aYQwil0SyI3Qc41dqmWDFITpiWEhSFMUI6Vc7V67rs0e3-MzvbBddv87ehtAoY7Npa00f_HLtF0GtPtPALTrVZh_RdYss0d5tK9c0Q3S-y-bBa6Vd62LvTDbztW1P0UGj2mjPdvkEfdxP3yeP-fPLw9Pk5jk3IKHPBTFc4xSkoEIxLUtJS15KqTUQAqrAjaopBcWg4UZgVta45ETUUnAwVtMTdLW9uwr-e7Cxr5YuGtu2qrN-iBUlLF0uiRQJvdyhg17auloFt1RhXf16SQBsARN8jME2fwjgauO-2rivNu6rnfu0c7Hdcdbafx6A8fQt_QEl1X8N
CODEN IEBEAX
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TBME.2025.3604527
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 12
ExternalDocumentID 40892666
10_1109_TBME_2025_3604527
11145804
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
5GY
5RE
6IF
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
.55
.GJ
53G
5VS
AAYJJ
AAYXX
ACKIV
AETIX
AFFNX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
VH1
VJK
X7M
ZGI
ZXP
NPM
7X8
ID FETCH-LOGICAL-c191t-82c5b0b0b2638a4b979375799bb1221a60fad331a41f5c8047d07528d9851ceb3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Sat Nov 01 14:25:14 EDT 2025
Thu Sep 04 04:48:23 EDT 2025
Sat Nov 29 07:36:26 EST 2025
Wed Sep 10 07:40:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c191t-82c5b0b0b2638a4b979375799bb1221a60fad331a41f5c8047d07528d9851ceb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40892666
PQID 3246387298
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3246387298
ieee_primary_11145804
pubmed_primary_40892666
crossref_primary_10_1109_TBME_2025_3604527
PublicationCentury 2000
PublicationDate 2025-Sep-02
PublicationDateYYYYMMDD 2025-09-02
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-Sep-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014846
Score 2.4773934
Snippet Objective: High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However,...
High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Benchmark testing
Diffusion model
Electrodes
Electromyography
Hands
High-density Electromyography
Interpolation
Muscles
Myoelectric control
Noise reduction
Recording
Signal reconstruction
Spatiotemporal phenomena
Title RePaint High-Density Surface Electromyography Signal Using Denoising Diffusion Probabilistic Model
URI https://ieeexplore.ieee.org/document/11145804
https://www.ncbi.nlm.nih.gov/pubmed/40892666
https://www.proquest.com/docview/3246387298
Volume PP
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BjtMwEB1BhRAcFiiF7bK7MhInJLeJ48T2EXa74kCrihbUW5Q4DooE6apNkPbvmXGyBQ49oFx8cOzYz45nPDNvAN5FEqV8PMl5kBSOS2sNN0WmeVkEZRbENnaeSunbZ7VY6M3GLPtgdR8L45zzzmduQkVvyy-2tqWrsinuSxlrYv98qJTqgrUOJgOpu6gc7JrjmS97E2YYmOn643yGqqCIJ1FCFOLqn0PIZ1U5LmD6g-bm2X9-4nM46SVK9qFbAi_ggauH8PQvnsEhPJ73FvSXkH9xy6yqG0YOHvya3NebO7Zqd2VmHZt1SXF-3vVE1mxVfafGvWMBw9rbqitVZdnSPRtb7vCHQA62xPfMKLPajxF8vZmtrz7xPs8Ct6itNVwLG-cBPgI3YyZzQ5x5sTImz0MhwixB2IooCjMZlrHFwakCBQ2hC4MgW9TGX8Gg3tbuFJi0WkV5HkQWxUojlE6kRcQNNiqEDeUY3t9PfHrb0WmkXg0JTEoopYRS2qM0hhFN8J-K_dyO4e09ViluBrJwZLXbtvsUpUMcAuoLegyvOxAPb8tAG5RGkrMjrb6BJ9S59x8T5zBodq27gEf2V1Ptd5e44jb60q-433bh0J4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hQBQOUF5leRRX6gnJkDhOYh95LAKxu1qVLeIWJY6DIrXZakmQ-PfMOIGWA4cqFx8cx_ZnxzOemW8AvgcSpXw8ybkX5ZZLYzTXeap4kXtF6oUmtI5K6W4Qj0bq_l6Pu2B1FwtjrXXOZ_aYis6Wn09NQ1dlJ7gvZaiI_XMhlFL4bbjWm9FAqjYuBz_O8dSXnRHT9_TJ5GzYR2VQhMdBRCTi8btjyOVV-VjEdEfN5dp_dvIzrHYyJTttF8E6zNlqA1b-YRrcgKVhZ0PfhOyHHadlVTNy8eAX5MBeP7PbZlakxrJ-mxbn93NHZc1uywdq3LkWMKw9LdtSWRQN3bSx8Qx_CeRiS4zPjHKr_dqCn5f9yfkV7zItcIP6Ws2VMGHm4SNwO6Yy08SaF8ZaZ5kvhJ9GCFweBH4q_SI0OLg4R1FDqFwjzAb18W2Yr6aV3QEmjYqDLPMCg4KlFrGKpEHMNTYqhPFlD45eJz750xJqJE4R8XRCKCWEUtKh1IMtmuC_Fbu57cG3V6wS3A5k40grO20eE5QPcQioMagefGlBfHtbekqjPBLtftDqIXy6mgwHyeB6dLMHy9QR500m9mG-njX2ABbNU10-zr66dfcCjzzS_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RePaint+High-Density+Surface+Electromyography+Signal+Using+Denoising+Diffusion+Probabilistic+Model&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Zhao%2C+Yihui&rft.au=Liao%2C+Jiawei&rft.au=Fang%2C+Xia&rft.au=Wang%2C+Hai&rft.date=2025-09-02&rft.eissn=1558-2531&rft.volume=PP&rft_id=info:doi/10.1109%2FTBME.2025.3604527&rft_id=info%3Apmid%2F40892666&rft.externalDocID=40892666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon