Model‐Free Approximate Dynamic Programming for Stochastic Zero‐Sum Games: Algorithm Design and Analysis

This paper studies the discrete‐time stochastic zero‐sum games by employing the approximate dynamic programming technique. We present on‐policy and off‐policy policy iteration algorithms to attain the saddle point without using the information of the system dynamics. A comparative analysis of model‐...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of robust and nonlinear control
Hlavní autoři: Guo, Liangyuan, Wang, Bing‐Chang, Dong, Hailing
Médium: Journal Article
Jazyk:angličtina
Vydáno: 14.11.2025
ISSN:1049-8923, 1099-1239
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper studies the discrete‐time stochastic zero‐sum games by employing the approximate dynamic programming technique. We present on‐policy and off‐policy policy iteration algorithms to attain the saddle point without using the information of the system dynamics. A comparative analysis of model‐free algorithms and their equivalence relationships is examined. Numerical examples are given to illustrate the efficiency of the proposed algorithms.
ISSN:1049-8923
1099-1239
DOI:10.1002/rnc.70287