Multi‐Swarm Dynamic Crow Search Algorithm for Dynamic Multi‐Objective Optimization

Dynamic multi‐objective optimization problems (DMOPs) are one of the most challenging problems in real‐world systems. This paper proposes a multi‐swarm dynamic crow search algorithm (CSA) to solve DMOPs effectively and advance the application of CSA for DMOPs. Three components are introduced in the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEJ transactions on electrical and electronic engineering
Hlavní autoři: Li, Geng‐Song, Liu, Yi, Li, Qing, Zheng, Qi‐Bin, Liu, Kun, Diao, Xing‐Chun
Médium: Journal Article
Jazyk:angličtina
Vydáno: 25.09.2025
ISSN:1931-4973, 1931-4981
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Dynamic multi‐objective optimization problems (DMOPs) are one of the most challenging problems in real‐world systems. This paper proposes a multi‐swarm dynamic crow search algorithm (CSA) to solve DMOPs effectively and advance the application of CSA for DMOPs. Three components are introduced in the algorithm. The multi‐swarm co‐evolution mechanism creates a distinct swarm for each optimization objective, while a memory time‐based archive update strategy is introduced. A complex behavior strategy is developed to adaptively adjust the key parameters and guide the swarms for fast convergence. The dynamism handling mechanism uses random re‐evaluation for change detection, proposes a split selection method, and a memory reuse strategy to choose old solutions with good diversity, and considers random re‐initialization and prediction‐based approaches to respond to the change. Extensive experiments demonstrate that the proposed algorithm is competitive in both optimization performance and computational cost when compared with state‐of‐the‐art methods. © 2025 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.
ISSN:1931-4973
1931-4981
DOI:10.1002/tee.70165