Multi‐Swarm Dynamic Crow Search Algorithm for Dynamic Multi‐Objective Optimization

Dynamic multi‐objective optimization problems (DMOPs) are one of the most challenging problems in real‐world systems. This paper proposes a multi‐swarm dynamic crow search algorithm (CSA) to solve DMOPs effectively and advance the application of CSA for DMOPs. Three components are introduced in the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEJ transactions on electrical and electronic engineering
Hlavní autoři: Li, Geng‐Song, Liu, Yi, Li, Qing, Zheng, Qi‐Bin, Liu, Kun, Diao, Xing‐Chun
Médium: Journal Article
Jazyk:angličtina
Vydáno: 25.09.2025
ISSN:1931-4973, 1931-4981
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Dynamic multi‐objective optimization problems (DMOPs) are one of the most challenging problems in real‐world systems. This paper proposes a multi‐swarm dynamic crow search algorithm (CSA) to solve DMOPs effectively and advance the application of CSA for DMOPs. Three components are introduced in the algorithm. The multi‐swarm co‐evolution mechanism creates a distinct swarm for each optimization objective, while a memory time‐based archive update strategy is introduced. A complex behavior strategy is developed to adaptively adjust the key parameters and guide the swarms for fast convergence. The dynamism handling mechanism uses random re‐evaluation for change detection, proposes a split selection method, and a memory reuse strategy to choose old solutions with good diversity, and considers random re‐initialization and prediction‐based approaches to respond to the change. Extensive experiments demonstrate that the proposed algorithm is competitive in both optimization performance and computational cost when compared with state‐of‐the‐art methods. © 2025 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.
AbstractList Dynamic multi‐objective optimization problems (DMOPs) are one of the most challenging problems in real‐world systems. This paper proposes a multi‐swarm dynamic crow search algorithm (CSA) to solve DMOPs effectively and advance the application of CSA for DMOPs. Three components are introduced in the algorithm. The multi‐swarm co‐evolution mechanism creates a distinct swarm for each optimization objective, while a memory time‐based archive update strategy is introduced. A complex behavior strategy is developed to adaptively adjust the key parameters and guide the swarms for fast convergence. The dynamism handling mechanism uses random re‐evaluation for change detection, proposes a split selection method, and a memory reuse strategy to choose old solutions with good diversity, and considers random re‐initialization and prediction‐based approaches to respond to the change. Extensive experiments demonstrate that the proposed algorithm is competitive in both optimization performance and computational cost when compared with state‐of‐the‐art methods. © 2025 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.
Author Diao, Xing‐Chun
Liu, Kun
Li, Qing
Li, Geng‐Song
Liu, Yi
Zheng, Qi‐Bin
Author_xml – sequence: 1
  givenname: Geng‐Song
  surname: Li
  fullname: Li, Geng‐Song
  organization: National Innovation Institute of Defense Technology Beijing 100071 China
– sequence: 2
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  organization: Academy of Military Sciences Beijing 100091 China
– sequence: 3
  givenname: Qing
  surname: Li
  fullname: Li, Qing
  organization: Shanghai Jiao Tong University Shanghai 200240 China
– sequence: 4
  givenname: Qi‐Bin
  surname: Zheng
  fullname: Zheng, Qi‐Bin
  organization: Academy of Military Sciences Beijing 100091 China
– sequence: 5
  givenname: Kun
  surname: Liu
  fullname: Liu, Kun
  organization: Academy of Military Sciences Beijing 100091 China
– sequence: 6
  givenname: Xing‐Chun
  surname: Diao
  fullname: Diao, Xing‐Chun
  organization: National Innovation Institute of Defense Technology Beijing 100071 China
BookMark eNo9kLtOwzAYhS1UJNrCwBt4ZUjxHzt2PFbhKhVlKLBGjvOHusqlcgxVmXgEnpEn4d7pnOF8Z_gmZNT1HRJyCmwGjMXnAXGmGMjkgIxBc4iETmG074ofkckwrBkTkqfpmDzePTfBfby9L7fGt_Ri15nWWZr5fkuXaLxd0Xnz1HsXVi2te79f_HN5uUYb3AvSfBNc615NcH13TA5r0wx48pdT8nB1eZ_dRIv8-jabLyILGkIUI5Q6kdIKLkrNJNZKyMqmqCtABamVparikgudVDrG2pTALXKljEglCMun5Oz31_p-GDzWxca71vhdAaz4FlJ8CSl-hPBPSFdYJQ
Cites_doi 10.3390/app12199627
10.1109/ACCESS.2020.3024108
10.1109/TCYB.2013.2245892
10.1109/TEVC.2021.3060014
10.1016/j.swevo.2018.04.011
10.1016/j.jwpe.2024.105693
10.1145/3524495
10.1109/4235.996017
10.1016/j.eswa.2024.123871
10.3390/biomimetics9110670
10.1016/j.compstruc.2016.03.001
10.1016/j.asoc.2024.111600
10.1016/j.jksuci.2021.11.016
10.1109/TEVC.2008.920671
10.1109/TEVC.2019.2925722
10.1109/TEVC.2016.2574621
10.1007/978-3-540-70928-2_60
10.1007/s10462-020-09911-9
10.1145/3470971
10.1109/TEVC.2004.831456
10.1016/j.swevo.2019.100598
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/tee.70165
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1931-4981
ExternalDocumentID 10_1002_tee_70165
GroupedDBID .3N
.GA
05W
0R~
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5GY
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCUV
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F21
G-S
G.N
GODZA
H.T
H.X
HGLYW
HHZ
HZ~
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N04
N05
NF~
O66
O8X
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XV2
ZZTAW
~IA
~WT
ID FETCH-LOGICAL-c191t-2e1b9566c434b906ef746dc8e9d1e718c6b7d2b3495d92efab13ce377a48614c3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001578396900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1931-4973
IngestDate Sat Nov 29 07:23:39 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c191t-2e1b9566c434b906ef746dc8e9d1e718c6b7d2b3495d92efab13ce377a48614c3
ParticipantIDs crossref_primary_10_1002_tee_70165
PublicationCentury 2000
PublicationDate 2025-09-25
PublicationDateYYYYMMDD 2025-09-25
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-25
  day: 25
PublicationDecade 2020
PublicationTitle IEEJ transactions on electrical and electronic engineering
PublicationYear 2025
References Benítez‐Hidalgo A (e_1_2_7_23_1) 2019; 51
Aboud A (e_1_2_7_12_1) 2022; 12
Lei W (e_1_2_7_20_1) 2024; 9
Liu RC (e_1_2_7_5_1) 2020; 43
Askarzadeh A (e_1_2_7_14_1) 2016; 169
Sun B (e_1_2_7_4_1) 2024; 159
Jiang S (e_1_2_7_6_1) 2023; 55
Tian Y (e_1_2_7_3_1) 2022; 54
Cao L (e_1_2_7_9_1) 2020; 24
Zhou A (e_1_2_7_22_1) 2014; 44
Zhao W (e_1_2_7_19_1) 2024; 64
Deb K (e_1_2_7_16_1) 2002; 6
Jiang S (e_1_2_7_8_1) 2017; 21
Yazdani D (e_1_2_7_2_1) 2021; 25
Meraihi Y (e_1_2_7_18_1) 2021; 54
Hussien AG (e_1_2_7_11_1) 2020; 8
Deb K (e_1_2_7_7_1) 2007
Monga P (e_1_2_7_10_1) 2022; 34
Jiang H (e_1_2_7_17_1) 2024; 250
Goh C‐K (e_1_2_7_21_1) 2009; 13
Farina M (e_1_2_7_13_1) 2004; 8
Ma H (e_1_2_7_15_1) 2019; 44
References_xml – volume: 12
  issue: 19
  year: 2022
  ident: e_1_2_7_12_1
  article-title: A distributed bi‐behaviors crow search algorithm for dynamic multi‐objective optimization and many‐objective optimization problems
  publication-title: Applied Sciences
  doi: 10.3390/app12199627
– volume: 8
  start-page: 173548
  year: 2020
  ident: e_1_2_7_11_1
  article-title: Crow search algorithm: Theory, recent advances, and applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3024108
– volume: 44
  start-page: 40
  issue: 1
  year: 2014
  ident: e_1_2_7_22_1
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2013.2245892
– volume: 25
  start-page: 609
  issue: 4
  year: 2021
  ident: e_1_2_7_2_1
  article-title: A survey of evolutionary continuous dynamic optimization over two decades—Part A
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2021.3060014
– volume: 44
  start-page: 365
  year: 2019
  ident: e_1_2_7_15_1
  article-title: Multi‐population techniques in nature inspired optimization algorithms: A comprehensive survey
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.04.011
– volume: 64
  year: 2024
  ident: e_1_2_7_19_1
  article-title: An aeration requirements calculating method based on BOD5 soft measurement model using deep learning and improved coati optimization algorithm
  publication-title: Journal of Water Process Engineering
  doi: 10.1016/j.jwpe.2024.105693
– volume: 55
  start-page: 1
  issue: 4
  year: 2023
  ident: e_1_2_7_6_1
  article-title: Evolutionary dynamic multi‐objective optimisation: A survey
  publication-title: ACM Computing Surveys
  doi: 10.1145/3524495
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: e_1_2_7_16_1
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA‐II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 250
  year: 2024
  ident: e_1_2_7_17_1
  article-title: Feature selection based on dynamic crow search algorithm for high‐dimensional data classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.123871
– volume: 9
  issue: 11
  year: 2024
  ident: e_1_2_7_20_1
  article-title: Improved osprey optimization algorithm with multi‐strategy fusion
  publication-title: Biomimetics
  doi: 10.3390/biomimetics9110670
– volume: 169
  start-page: 1
  year: 2016
  ident: e_1_2_7_14_1
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Computers and Structures
  doi: 10.1016/j.compstruc.2016.03.001
– volume: 159
  year: 2024
  ident: e_1_2_7_4_1
  article-title: Scalable benchmarks and performance measures for dynamic multi‐objective optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2024.111600
– volume: 34
  start-page: 9622
  issue: 10
  year: 2022
  ident: e_1_2_7_10_1
  article-title: A comprehensive meta‐analysis of emerging swarm intelligent computing techniques and their research trend
  publication-title: Journal of King Saud University, Computer and Information Sciences
  doi: 10.1016/j.jksuci.2021.11.016
– volume: 13
  start-page: 103
  issue: 1
  year: 2009
  ident: e_1_2_7_21_1
  article-title: A competitive‐cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.920671
– volume: 24
  start-page: 305
  issue: 2
  year: 2020
  ident: e_1_2_7_9_1
  article-title: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2019.2925722
– volume: 21
  start-page: 65
  issue: 1
  year: 2017
  ident: e_1_2_7_8_1
  article-title: A steady‐state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2574621
– start-page: 803
  volume-title: Proceedings of the 4th International Conference on Evolutionary Multi‐Criterion Optimization
  year: 2007
  ident: e_1_2_7_7_1
  doi: 10.1007/978-3-540-70928-2_60
– volume: 54
  start-page: 2669
  issue: 4
  year: 2021
  ident: e_1_2_7_18_1
  article-title: A comprehensive survey of crow search algorithm and its applications
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-020-09911-9
– volume: 43
  start-page: 1246
  issue: 7
  year: 2020
  ident: e_1_2_7_5_1
  article-title: A survey on dynamic multi‐objective optimization
  publication-title: Jisuanji Xuebao/Chinese Journal of Computers
– volume: 54
  start-page: 1
  issue: 8
  year: 2022
  ident: e_1_2_7_3_1
  article-title: Evolutionary large‐scale multi‐objective optimization: A survey
  publication-title: ACM Computing Surveys
  doi: 10.1145/3470971
– volume: 8
  start-page: 425
  issue: 5
  year: 2004
  ident: e_1_2_7_13_1
  article-title: Dynamic multiobjective optimization problems: Test cases, approximations, and applications
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.831456
– volume: 51
  year: 2019
  ident: e_1_2_7_23_1
  article-title: JMetalPy: A python framework for multi‐objective optimization with metaheuristics
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.100598
SSID ssj0046388
Score 2.3486767
SecondaryResourceType online_first
Snippet Dynamic multi‐objective optimization problems (DMOPs) are one of the most challenging problems in real‐world systems. This paper proposes a multi‐swarm dynamic...
SourceID crossref
SourceType Index Database
Title Multi‐Swarm Dynamic Crow Search Algorithm for Dynamic Multi‐Objective Optimization
WOSCitedRecordID wos001578396900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1931-4981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046388
  issn: 1931-4973
  databaseCode: DRFUL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFLZKYYABcYpbEWKLAomT-hihBSFUcYMQS5U4LhTRFJVwjGys_EZ-CS9x4rqwwMASVa6dWn5f35G89z2ENmKSkXZF3HElgwAFLKST9YF0KCNuO4QgO6R5oXCTHh6yqyt-XKm8l7Uwz_c0SdjrK3_4V1HDGAg7K539g7j1TWEAPoPQ4Qpih-uvBJ-X1OochrOXsN-1G6rvvF2HoNtWGcb29v1Nr99Jb7t5pmE5Y3j1UXSnFKJ9BKqlW9Rsmg4tBIsHWZ-Jsul4_vZB9dbRPARGqx05oD_UqUAd9WwelI7edM_8-ik3E53h-SfGHa5vpdJYJ4Od7xSM4sUDDVzLsi9U8XOhg7nvZY3vlN6T5pjq7vJD6ysW2VTKTZpVZw1MW_k6_5vF03mIirMZt2BpK186gkYxrXFWRaON072LZmnUA1BTTCUoqL2VJFUu3tK_a7g2ho9yPoUmi-DC2lagmEYVmcygCYNychZd5gL-fPvIgWEVYrcyYFgKGJYGhgXA0DPKdRoSlgmJOXSxt3te33eK3hqOgAg9dbD0IgiNiQj8IOIukW0akFgwyWNPgr8iSERjHPkQP8ccy3YYeb6QPqVhwMCjE_48qia9RC4gy_ViCn9pgoXwgpBjViMBHBgJPU-6bSYW0Xp5LK0HRaHS-nHwS7-ZtIzGB4BZQdW0_yRX0Zh4TjuP_bVCZF8NImSV
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90Swarm+Dynamic+Crow+Search+Algorithm+for+Dynamic+Multi%E2%80%90Objective+Optimization&rft.jtitle=IEEJ+transactions+on+electrical+and+electronic+engineering&rft.au=Li%2C+Geng%E2%80%90Song&rft.au=Liu%2C+Yi&rft.au=Li%2C+Qing&rft.au=Zheng%2C+Qi%E2%80%90Bin&rft.date=2025-09-25&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002%2Ftee.70165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tee_70165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-4973&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-4973&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-4973&client=summon