Multi‐Swarm Dynamic Crow Search Algorithm for Dynamic Multi‐Objective Optimization
Dynamic multi‐objective optimization problems (DMOPs) are one of the most challenging problems in real‐world systems. This paper proposes a multi‐swarm dynamic crow search algorithm (CSA) to solve DMOPs effectively and advance the application of CSA for DMOPs. Three components are introduced in the...
Saved in:
| Published in: | IEEJ transactions on electrical and electronic engineering |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
25.09.2025
|
| ISSN: | 1931-4973, 1931-4981 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Dynamic multi‐objective optimization problems (DMOPs) are one of the most challenging problems in real‐world systems. This paper proposes a multi‐swarm dynamic crow search algorithm (CSA) to solve DMOPs effectively and advance the application of CSA for DMOPs. Three components are introduced in the algorithm. The multi‐swarm co‐evolution mechanism creates a distinct swarm for each optimization objective, while a memory time‐based archive update strategy is introduced. A complex behavior strategy is developed to adaptively adjust the key parameters and guide the swarms for fast convergence. The dynamism handling mechanism uses random re‐evaluation for change detection, proposes a split selection method, and a memory reuse strategy to choose old solutions with good diversity, and considers random re‐initialization and prediction‐based approaches to respond to the change. Extensive experiments demonstrate that the proposed algorithm is competitive in both optimization performance and computational cost when compared with state‐of‐the‐art methods. © 2025 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC. |
|---|---|
| AbstractList | Dynamic multi‐objective optimization problems (DMOPs) are one of the most challenging problems in real‐world systems. This paper proposes a multi‐swarm dynamic crow search algorithm (CSA) to solve DMOPs effectively and advance the application of CSA for DMOPs. Three components are introduced in the algorithm. The multi‐swarm co‐evolution mechanism creates a distinct swarm for each optimization objective, while a memory time‐based archive update strategy is introduced. A complex behavior strategy is developed to adaptively adjust the key parameters and guide the swarms for fast convergence. The dynamism handling mechanism uses random re‐evaluation for change detection, proposes a split selection method, and a memory reuse strategy to choose old solutions with good diversity, and considers random re‐initialization and prediction‐based approaches to respond to the change. Extensive experiments demonstrate that the proposed algorithm is competitive in both optimization performance and computational cost when compared with state‐of‐the‐art methods. © 2025 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC. |
| Author | Diao, Xing‐Chun Liu, Kun Li, Qing Li, Geng‐Song Liu, Yi Zheng, Qi‐Bin |
| Author_xml | – sequence: 1 givenname: Geng‐Song surname: Li fullname: Li, Geng‐Song organization: National Innovation Institute of Defense Technology Beijing 100071 China – sequence: 2 givenname: Yi surname: Liu fullname: Liu, Yi organization: Academy of Military Sciences Beijing 100091 China – sequence: 3 givenname: Qing surname: Li fullname: Li, Qing organization: Shanghai Jiao Tong University Shanghai 200240 China – sequence: 4 givenname: Qi‐Bin surname: Zheng fullname: Zheng, Qi‐Bin organization: Academy of Military Sciences Beijing 100091 China – sequence: 5 givenname: Kun surname: Liu fullname: Liu, Kun organization: Academy of Military Sciences Beijing 100091 China – sequence: 6 givenname: Xing‐Chun surname: Diao fullname: Diao, Xing‐Chun organization: National Innovation Institute of Defense Technology Beijing 100071 China |
| BookMark | eNo9kLtOwzAYhS1UJNrCwBt4ZUjxHzt2PFbhKhVlKLBGjvOHusqlcgxVmXgEnpEn4d7pnOF8Z_gmZNT1HRJyCmwGjMXnAXGmGMjkgIxBc4iETmG074ofkckwrBkTkqfpmDzePTfBfby9L7fGt_Ri15nWWZr5fkuXaLxd0Xnz1HsXVi2te79f_HN5uUYb3AvSfBNc615NcH13TA5r0wx48pdT8nB1eZ_dRIv8-jabLyILGkIUI5Q6kdIKLkrNJNZKyMqmqCtABamVparikgudVDrG2pTALXKljEglCMun5Oz31_p-GDzWxca71vhdAaz4FlJ8CSl-hPBPSFdYJQ |
| Cites_doi | 10.3390/app12199627 10.1109/ACCESS.2020.3024108 10.1109/TCYB.2013.2245892 10.1109/TEVC.2021.3060014 10.1016/j.swevo.2018.04.011 10.1016/j.jwpe.2024.105693 10.1145/3524495 10.1109/4235.996017 10.1016/j.eswa.2024.123871 10.3390/biomimetics9110670 10.1016/j.compstruc.2016.03.001 10.1016/j.asoc.2024.111600 10.1016/j.jksuci.2021.11.016 10.1109/TEVC.2008.920671 10.1109/TEVC.2019.2925722 10.1109/TEVC.2016.2574621 10.1007/978-3-540-70928-2_60 10.1007/s10462-020-09911-9 10.1145/3470971 10.1109/TEVC.2004.831456 10.1016/j.swevo.2019.100598 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1002/tee.70165 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1931-4981 |
| ExternalDocumentID | 10_1002_tee_70165 |
| GroupedDBID | .3N .GA 05W 0R~ 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5GY 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCUV ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADMGS ADOZA ADXAS AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CITATION CS3 D-E D-F DCZOG DPXWK DRFUL DRSTM DU5 EBS F00 F01 F04 F21 G-S G.N GODZA H.T H.X HGLYW HHZ HZ~ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ N04 N05 NF~ O66 O8X O9- OIG P2P P2W P2X P4D Q.N QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XV2 ZZTAW ~IA ~WT |
| ID | FETCH-LOGICAL-c191t-2e1b9566c434b906ef746dc8e9d1e718c6b7d2b3495d92efab13ce377a48614c3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001578396900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1931-4973 |
| IngestDate | Sat Nov 29 07:23:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c191t-2e1b9566c434b906ef746dc8e9d1e718c6b7d2b3495d92efab13ce377a48614c3 |
| ParticipantIDs | crossref_primary_10_1002_tee_70165 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-25 |
| PublicationDateYYYYMMDD | 2025-09-25 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEJ transactions on electrical and electronic engineering |
| PublicationYear | 2025 |
| References | Benítez‐Hidalgo A (e_1_2_7_23_1) 2019; 51 Aboud A (e_1_2_7_12_1) 2022; 12 Lei W (e_1_2_7_20_1) 2024; 9 Liu RC (e_1_2_7_5_1) 2020; 43 Askarzadeh A (e_1_2_7_14_1) 2016; 169 Sun B (e_1_2_7_4_1) 2024; 159 Jiang S (e_1_2_7_6_1) 2023; 55 Tian Y (e_1_2_7_3_1) 2022; 54 Cao L (e_1_2_7_9_1) 2020; 24 Zhou A (e_1_2_7_22_1) 2014; 44 Zhao W (e_1_2_7_19_1) 2024; 64 Deb K (e_1_2_7_16_1) 2002; 6 Jiang S (e_1_2_7_8_1) 2017; 21 Yazdani D (e_1_2_7_2_1) 2021; 25 Meraihi Y (e_1_2_7_18_1) 2021; 54 Hussien AG (e_1_2_7_11_1) 2020; 8 Deb K (e_1_2_7_7_1) 2007 Monga P (e_1_2_7_10_1) 2022; 34 Jiang H (e_1_2_7_17_1) 2024; 250 Goh C‐K (e_1_2_7_21_1) 2009; 13 Farina M (e_1_2_7_13_1) 2004; 8 Ma H (e_1_2_7_15_1) 2019; 44 |
| References_xml | – volume: 12 issue: 19 year: 2022 ident: e_1_2_7_12_1 article-title: A distributed bi‐behaviors crow search algorithm for dynamic multi‐objective optimization and many‐objective optimization problems publication-title: Applied Sciences doi: 10.3390/app12199627 – volume: 8 start-page: 173548 year: 2020 ident: e_1_2_7_11_1 article-title: Crow search algorithm: Theory, recent advances, and applications publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3024108 – volume: 44 start-page: 40 issue: 1 year: 2014 ident: e_1_2_7_22_1 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2013.2245892 – volume: 25 start-page: 609 issue: 4 year: 2021 ident: e_1_2_7_2_1 article-title: A survey of evolutionary continuous dynamic optimization over two decades—Part A publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2021.3060014 – volume: 44 start-page: 365 year: 2019 ident: e_1_2_7_15_1 article-title: Multi‐population techniques in nature inspired optimization algorithms: A comprehensive survey publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.04.011 – volume: 64 year: 2024 ident: e_1_2_7_19_1 article-title: An aeration requirements calculating method based on BOD5 soft measurement model using deep learning and improved coati optimization algorithm publication-title: Journal of Water Process Engineering doi: 10.1016/j.jwpe.2024.105693 – volume: 55 start-page: 1 issue: 4 year: 2023 ident: e_1_2_7_6_1 article-title: Evolutionary dynamic multi‐objective optimisation: A survey publication-title: ACM Computing Surveys doi: 10.1145/3524495 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: e_1_2_7_16_1 article-title: A fast and elitist multiobjective genetic algorithm: NSGA‐II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 250 year: 2024 ident: e_1_2_7_17_1 article-title: Feature selection based on dynamic crow search algorithm for high‐dimensional data classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2024.123871 – volume: 9 issue: 11 year: 2024 ident: e_1_2_7_20_1 article-title: Improved osprey optimization algorithm with multi‐strategy fusion publication-title: Biomimetics doi: 10.3390/biomimetics9110670 – volume: 169 start-page: 1 year: 2016 ident: e_1_2_7_14_1 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Computers and Structures doi: 10.1016/j.compstruc.2016.03.001 – volume: 159 year: 2024 ident: e_1_2_7_4_1 article-title: Scalable benchmarks and performance measures for dynamic multi‐objective optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2024.111600 – volume: 34 start-page: 9622 issue: 10 year: 2022 ident: e_1_2_7_10_1 article-title: A comprehensive meta‐analysis of emerging swarm intelligent computing techniques and their research trend publication-title: Journal of King Saud University, Computer and Information Sciences doi: 10.1016/j.jksuci.2021.11.016 – volume: 13 start-page: 103 issue: 1 year: 2009 ident: e_1_2_7_21_1 article-title: A competitive‐cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.920671 – volume: 24 start-page: 305 issue: 2 year: 2020 ident: e_1_2_7_9_1 article-title: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2019.2925722 – volume: 21 start-page: 65 issue: 1 year: 2017 ident: e_1_2_7_8_1 article-title: A steady‐state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2016.2574621 – start-page: 803 volume-title: Proceedings of the 4th International Conference on Evolutionary Multi‐Criterion Optimization year: 2007 ident: e_1_2_7_7_1 doi: 10.1007/978-3-540-70928-2_60 – volume: 54 start-page: 2669 issue: 4 year: 2021 ident: e_1_2_7_18_1 article-title: A comprehensive survey of crow search algorithm and its applications publication-title: Artificial Intelligence Review doi: 10.1007/s10462-020-09911-9 – volume: 43 start-page: 1246 issue: 7 year: 2020 ident: e_1_2_7_5_1 article-title: A survey on dynamic multi‐objective optimization publication-title: Jisuanji Xuebao/Chinese Journal of Computers – volume: 54 start-page: 1 issue: 8 year: 2022 ident: e_1_2_7_3_1 article-title: Evolutionary large‐scale multi‐objective optimization: A survey publication-title: ACM Computing Surveys doi: 10.1145/3470971 – volume: 8 start-page: 425 issue: 5 year: 2004 ident: e_1_2_7_13_1 article-title: Dynamic multiobjective optimization problems: Test cases, approximations, and applications publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.831456 – volume: 51 year: 2019 ident: e_1_2_7_23_1 article-title: JMetalPy: A python framework for multi‐objective optimization with metaheuristics publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2019.100598 |
| SSID | ssj0046388 |
| Score | 2.348768 |
| SecondaryResourceType | online_first |
| Snippet | Dynamic multi‐objective optimization problems (DMOPs) are one of the most challenging problems in real‐world systems. This paper proposes a multi‐swarm dynamic... |
| SourceID | crossref |
| SourceType | Index Database |
| Title | Multi‐Swarm Dynamic Crow Search Algorithm for Dynamic Multi‐Objective Optimization |
| WOSCitedRecordID | wos001578396900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1931-4981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0046388 issn: 1931-4973 databaseCode: DRFUL dateStart: 20060101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT4QwFG7G0YMejGvcQ4w3gg6FTtuja4wx7hrjZQKl1TEOY0Zcjt68-hv9JT4odKpe9OCFkNJCw_flLfAWhFaUCrFKQuJxQbgXgk73Il9hT1EiWYNJykhcNJugBwfs8pIf1WpvVS7M0x1NU_bywu__FWoYA7Dz1Nk_wG1uCgNwDqDDEWCH46-AL1JqTQzD6XPU67hbuu-8uwlOt6sjjN31u-tur53ddIpIw2rG19WH8a0WiO4hiJZOmbNpG7TgLO7lfSaqpuPF3wfdW8fUIbBa7ch--UMTCtTW3-ZB6JhNd-3Lj4WaaH-df2zd4epGaol13N_5RllRvPyggUkefaGTn0sZzAM_b3yn5Z60x3R3lx9SX1eRzaRcpXl2Vl-1Vb_zv2k8E4eoazbjFixtFUsH0CCmhLM6Gtw62Tnfr5R6CGKK6QAFvbeqSFUDr5nnWqaNZaOcjaHR0rlw1jUpxlFNphNoxCo5OYkuCoA_Xt8LYjgl7E5ODEcTwzHEcIAYZka1zlDCsSkxhc53ts82d72yt4YnwEPPPCz9GFzjpgiDMOaNplQ0bCaCSZ74EuwV0YxpguMA_OeEY6mi2A-EDCiNQgYWnQimUT3tpnIGOYIKTBinvgJzNEpIpFSiIhYr4QO8isyi5eq1tO51CZXWjxc_95tJ82i4T5gFVM96j3IRDYmnrP3QWyoh-wQWY2aL |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90Swarm+Dynamic+Crow+Search+Algorithm+for+Dynamic+Multi%E2%80%90Objective+Optimization&rft.jtitle=IEEJ+transactions+on+electrical+and+electronic+engineering&rft.au=Li%2C+Geng%E2%80%90Song&rft.au=Liu%2C+Yi&rft.au=Li%2C+Qing&rft.au=Zheng%2C+Qi%E2%80%90Bin&rft.date=2025-09-25&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002%2Ftee.70165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tee_70165 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-4973&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-4973&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-4973&client=summon |