Enhancing Cybersecurity Through Artificial Intelligence: A Novel Approach to Intrusion Detection
Modern cyber threats have evolved to sophisticated levels, necessitating advanced intrusion detection systems (IDS) to protect critical network infrastructure. Traditional signature-based and rule-based IDS face challenges in identifying new and evolving attacks, leading organizations to adopt AI-dr...
Saved in:
| Published in: | International journal of advanced computer science & applications Vol. 16; no. 4 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
West Yorkshire
Science and Information (SAI) Organization Limited
2025
|
| Subjects: | |
| ISSN: | 2158-107X, 2156-5570 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Modern cyber threats have evolved to sophisticated levels, necessitating advanced intrusion detection systems (IDS) to protect critical network infrastructure. Traditional signature-based and rule-based IDS face challenges in identifying new and evolving attacks, leading organizations to adopt AI-driven detection solutions. This study introduces an AI-powered intrusion detection system that integrates machine learning (ML) and deep learning (DL) techniques—specifically Support Vector Machines (SVM), Random Forests, Autoencoders, and Convolutional Neural Networks (CNNs)—to enhance detection accuracy while reducing false positive alerts. Feature selection techniques such as SHAP-based analysis are employed to identify the most critical attributes in network traffic, improving model interpretability and efficiency. The system also incorporates reinforcement learning (RL) to enable adaptive intrusion response mechanisms, further enhancing its resilience against evolving threats. The proposed hybrid framework is evaluated using the SDN_Intrusion dataset, achieving an accuracy of 92.8%, a false positive rate of 5.4%, and an F1-score of 91.8%, outperforming conventional IDS solutions. Comparative analysis with prior studies demonstrates its superior capability in detecting both known and unknown threats, particularly zero-day attacks and anomalies. While the system significantly enhances security coverage, challenges in real-time implementation and computational overhead remain. This paper explores potential solutions, including federated learning and explainable AI techniques, to optimize IDS functionality and adaptive capabilities. |
|---|---|
| AbstractList | Modern cyber threats have evolved to sophisticated levels, necessitating advanced intrusion detection systems (IDS) to protect critical network infrastructure. Traditional signature-based and rule-based IDS face challenges in identifying new and evolving attacks, leading organizations to adopt AI-driven detection solutions. This study introduces an AI-powered intrusion detection system that integrates machine learning (ML) and deep learning (DL) techniques—specifically Support Vector Machines (SVM), Random Forests, Autoencoders, and Convolutional Neural Networks (CNNs)—to enhance detection accuracy while reducing false positive alerts. Feature selection techniques such as SHAP-based analysis are employed to identify the most critical attributes in network traffic, improving model interpretability and efficiency. The system also incorporates reinforcement learning (RL) to enable adaptive intrusion response mechanisms, further enhancing its resilience against evolving threats. The proposed hybrid framework is evaluated using the SDN_Intrusion dataset, achieving an accuracy of 92.8%, a false positive rate of 5.4%, and an F1-score of 91.8%, outperforming conventional IDS solutions. Comparative analysis with prior studies demonstrates its superior capability in detecting both known and unknown threats, particularly zero-day attacks and anomalies. While the system significantly enhances security coverage, challenges in real-time implementation and computational overhead remain. This paper explores potential solutions, including federated learning and explainable AI techniques, to optimize IDS functionality and adaptive capabilities. |
| Author | Alzaylaee, Mohammed K. |
| Author_xml | – sequence: 1 givenname: Mohammed K. surname: Alzaylaee fullname: Alzaylaee, Mohammed K. |
| BookMark | eNotkMtOwzAQRS1UJErpH7CwxDrFjh9x2EWhQFEFC4rEzjiu07gKdrETpP496WM2cxdHd0bnGoycdwaAW4xmmDKe3y9ei_KjmKUoZTOEOaJMXIBxihlPGMvQ6JhFglH2dQWmMW7RMCRPuSBj8D13jXLaug0s95UJ0eg-2G4PV03w_aaBRehsbbVVLVy4zrSt3RinzQMs4Jv_My0sdrvglW5g5w9E6KP1Dj6azuhuSDfgslZtNNPznoDPp_mqfEmW78-LslgmGudYJBXHiIoaE5JWjFZaZ2uK1VoRkzOCtaEEizXXKudVTQXlGctNRjPEKa2VqDCZgLtT7_DNb29iJ7e-D244KUmKeEryjJGBoidKBx9jMLXcBfujwl5iJI865UmnPOiUZ53kHzRGag0 |
| ContentType | Journal Article |
| Copyright | 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.14569/IJACSA.2025.0160458 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10_14569_IJACSA_2025_0160458 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c1918-b61048f1332b54bcc7d41ada3e9531ce4318d6ca96bf4846759e7470644fa8b13 |
| IEDL.DBID | K7- |
| ISSN | 2158-107X |
| IngestDate | Sun Jul 13 05:22:34 EDT 2025 Sat Nov 29 07:58:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1918-b61048f1332b54bcc7d41ada3e9531ce4318d6ca96bf4846759e7470644fa8b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3206239753?pq-origsite=%requestingapplication% |
| PQID | 3206239753 |
| PQPubID | 5444811 |
| ParticipantIDs | proquest_journals_3206239753 crossref_primary_10_14569_IJACSA_2025_0160458 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2025 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.2788575 |
| Snippet | Modern cyber threats have evolved to sophisticated levels, necessitating advanced intrusion detection systems (IDS) to protect critical network infrastructure.... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| SubjectTerms | Accuracy Artificial intelligence Artificial neural networks Communications traffic Cybersecurity Datasets Deep learning Explainable artificial intelligence Federated learning Intrusion detection systems Machine learning Real time Support vector machines |
| Title | Enhancing Cybersecurity Through Artificial Intelligence: A Novel Approach to Intrusion Detection |
| URI | https://www.proquest.com/docview/3206239753 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Advanced Technologies & Aerospace Database (NC LIVE) customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: M2O dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU8IwEM4oePAiPkcUmRy8ZqAlfXlxEGFEpXYUHfRSkzZVLwUBmfHfu9umKhcvHppLOmlnd5N9JPk-Qo6lpwSSn7CMK5ULIZn0IsXAdozENmzbzIo5D9eO77ujkRfogttMH6ss1sRsoY7HEdbIGy2zCZ4ar4GeTt4Zskbh7qqm0FglZQMGRzu_cth3jaUJzt_OkDjBsSGKqTPSt-cgbPAa_ct2564NOaKJ0J02bhkue6flxTnzOL3Kf_91k2zoWJO2c-PYIisq3SaVgseB6mm9Q5676SvCbqQvtPMpIR7UnHZ0mJP4ZCPkSBO0_wvC84S2qT9eKPiERian8zG-Mf3AGhw9V_PsoFe6S-573WHngmnmBRZB_uYyCUEVdxPIX01pcRlFTswNEYuW8mDORgqiDje2I-HZMuEYwViegrwEwhueCFcarT1SSsep2ieU87gpude0Yy44PFImrmE5UgrETrNElbBC4uEkB9gIMTFBDYW5hkLUUKg1VCW1Quahnm6z8EfgB393H5J1HCyvodRICQSijshatJi_zaZ1Uj7r-sFtPbMiaAfmDbSB9QQ9QX8QPH4BgGXQDQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LToNAFL3RaqIb6zPW5yx0SQQ6UDAxhlSN1UpMrKZxgzPDoG5Aba3pT_mN3svDx8adCxesIEOYe7ivmTkHYEf6WpD4iZFrpXIhpCF9pQ3EjpW4luvaeTPnptsKQ6_f9y8n4L06C0PbKiufmDvqOFPUI99r2iZGajoGevj0bJBqFK2uVhIaBSzO9fgNS7bBQecI7btr2yfHvfapUaoKGAprE8-QmDBwL8HazJYOl0q1Ym6JWDS1j3hUGiOqF7tK-K5MOEVnx9eYc2Po5onwpNXEcSdhinMslvD_uXRuP3s6JiYbbs78iYGUWFNb_fK0HqYp_l7nLGhfBViT2kQV6tIS5c9o-DMY5BHupP7f5mYe5spcmgUF-BdgQqeLUK90Kljptpbg7jh9IFqR9J61xxLz3VKzj_UKkaJ8hIJJg3W-UZTus4CF2UjjK0rmdTbM6ImXV-oxsiM9zDeypctw_SffuQK1NEv1KjDOY1Ny33RjLjheUiae5bSkFMQN54gGGJWFo6eCQCSiwosQERWIiAgRUYmIBmxUNo5KdzKIvgy89vvtbZg57V10o24nPF-HWRq46BdtQA0nR2_CtBoNHwcvWzlyGdz9NRw-ANLrJgg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Cybersecurity+Through+Artificial+Intelligence%3A+A+Novel+Approach+to+Intrusion+Detection&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Alzaylaee%2C+Mohammed+K.&rft.date=2025&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=16&rft.issue=4&rft_id=info:doi/10.14569%2FIJACSA.2025.0160458&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2025_0160458 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |