Enhancing Cybersecurity Through Artificial Intelligence: A Novel Approach to Intrusion Detection

Modern cyber threats have evolved to sophisticated levels, necessitating advanced intrusion detection systems (IDS) to protect critical network infrastructure. Traditional signature-based and rule-based IDS face challenges in identifying new and evolving attacks, leading organizations to adopt AI-dr...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced computer science & applications Vol. 16; no. 4
Main Author: Alzaylaee, Mohammed K.
Format: Journal Article
Language:English
Published: West Yorkshire Science and Information (SAI) Organization Limited 2025
Subjects:
ISSN:2158-107X, 2156-5570
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Modern cyber threats have evolved to sophisticated levels, necessitating advanced intrusion detection systems (IDS) to protect critical network infrastructure. Traditional signature-based and rule-based IDS face challenges in identifying new and evolving attacks, leading organizations to adopt AI-driven detection solutions. This study introduces an AI-powered intrusion detection system that integrates machine learning (ML) and deep learning (DL) techniques—specifically Support Vector Machines (SVM), Random Forests, Autoencoders, and Convolutional Neural Networks (CNNs)—to enhance detection accuracy while reducing false positive alerts. Feature selection techniques such as SHAP-based analysis are employed to identify the most critical attributes in network traffic, improving model interpretability and efficiency. The system also incorporates reinforcement learning (RL) to enable adaptive intrusion response mechanisms, further enhancing its resilience against evolving threats. The proposed hybrid framework is evaluated using the SDN_Intrusion dataset, achieving an accuracy of 92.8%, a false positive rate of 5.4%, and an F1-score of 91.8%, outperforming conventional IDS solutions. Comparative analysis with prior studies demonstrates its superior capability in detecting both known and unknown threats, particularly zero-day attacks and anomalies. While the system significantly enhances security coverage, challenges in real-time implementation and computational overhead remain. This paper explores potential solutions, including federated learning and explainable AI techniques, to optimize IDS functionality and adaptive capabilities.
AbstractList Modern cyber threats have evolved to sophisticated levels, necessitating advanced intrusion detection systems (IDS) to protect critical network infrastructure. Traditional signature-based and rule-based IDS face challenges in identifying new and evolving attacks, leading organizations to adopt AI-driven detection solutions. This study introduces an AI-powered intrusion detection system that integrates machine learning (ML) and deep learning (DL) techniques—specifically Support Vector Machines (SVM), Random Forests, Autoencoders, and Convolutional Neural Networks (CNNs)—to enhance detection accuracy while reducing false positive alerts. Feature selection techniques such as SHAP-based analysis are employed to identify the most critical attributes in network traffic, improving model interpretability and efficiency. The system also incorporates reinforcement learning (RL) to enable adaptive intrusion response mechanisms, further enhancing its resilience against evolving threats. The proposed hybrid framework is evaluated using the SDN_Intrusion dataset, achieving an accuracy of 92.8%, a false positive rate of 5.4%, and an F1-score of 91.8%, outperforming conventional IDS solutions. Comparative analysis with prior studies demonstrates its superior capability in detecting both known and unknown threats, particularly zero-day attacks and anomalies. While the system significantly enhances security coverage, challenges in real-time implementation and computational overhead remain. This paper explores potential solutions, including federated learning and explainable AI techniques, to optimize IDS functionality and adaptive capabilities.
Author Alzaylaee, Mohammed K.
Author_xml – sequence: 1
  givenname: Mohammed K.
  surname: Alzaylaee
  fullname: Alzaylaee, Mohammed K.
BookMark eNotkMtOwzAQRS1UJErpH7CwxDrFjh9x2EWhQFEFC4rEzjiu07gKdrETpP496WM2cxdHd0bnGoycdwaAW4xmmDKe3y9ei_KjmKUoZTOEOaJMXIBxihlPGMvQ6JhFglH2dQWmMW7RMCRPuSBj8D13jXLaug0s95UJ0eg-2G4PV03w_aaBRehsbbVVLVy4zrSt3RinzQMs4Jv_My0sdrvglW5g5w9E6KP1Dj6azuhuSDfgslZtNNPznoDPp_mqfEmW78-LslgmGudYJBXHiIoaE5JWjFZaZ2uK1VoRkzOCtaEEizXXKudVTQXlGctNRjPEKa2VqDCZgLtT7_DNb29iJ7e-D244KUmKeEryjJGBoidKBx9jMLXcBfujwl5iJI865UmnPOiUZ53kHzRGag0
ContentType Journal Article
Copyright 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.14569/IJACSA.2025.0160458
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10_14569_IJACSA_2025_0160458
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c1918-b61048f1332b54bcc7d41ada3e9531ce4318d6ca96bf4846759e7470644fa8b13
IEDL.DBID K7-
ISSN 2158-107X
IngestDate Sun Jul 13 05:22:34 EDT 2025
Sat Nov 29 07:58:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1918-b61048f1332b54bcc7d41ada3e9531ce4318d6ca96bf4846759e7470644fa8b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3206239753?pq-origsite=%requestingapplication%
PQID 3206239753
PQPubID 5444811
ParticipantIDs proquest_journals_3206239753
crossref_primary_10_14569_IJACSA_2025_0160458
PublicationCentury 2000
PublicationDate 2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2025
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.2788575
Snippet Modern cyber threats have evolved to sophisticated levels, necessitating advanced intrusion detection systems (IDS) to protect critical network infrastructure....
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Accuracy
Artificial intelligence
Artificial neural networks
Communications traffic
Cybersecurity
Datasets
Deep learning
Explainable artificial intelligence
Federated learning
Intrusion detection systems
Machine learning
Real time
Support vector machines
Title Enhancing Cybersecurity Through Artificial Intelligence: A Novel Approach to Intrusion Detection
URI https://www.proquest.com/docview/3206239753
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: M2O
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU8IwEM4oePAiPkcUmRy8ZqAlfXlxEGFEpXYUHfRSkzZVLwUBmfHfu9umKhcvHppLOmlnd5N9JPk-Qo6lpwSSn7CMK5ULIZn0IsXAdozENmzbzIo5D9eO77ujkRfogttMH6ss1sRsoY7HEdbIGy2zCZ4ar4GeTt4Zskbh7qqm0FglZQMGRzu_cth3jaUJzt_OkDjBsSGKqTPSt-cgbPAa_ct2564NOaKJ0J02bhkue6flxTnzOL3Kf_91k2zoWJO2c-PYIisq3SaVgseB6mm9Q5676SvCbqQvtPMpIR7UnHZ0mJP4ZCPkSBO0_wvC84S2qT9eKPiERian8zG-Mf3AGhw9V_PsoFe6S-573WHngmnmBRZB_uYyCUEVdxPIX01pcRlFTswNEYuW8mDORgqiDje2I-HZMuEYwViegrwEwhueCFcarT1SSsep2ieU87gpude0Yy44PFImrmE5UgrETrNElbBC4uEkB9gIMTFBDYW5hkLUUKg1VCW1Quahnm6z8EfgB393H5J1HCyvodRICQSijshatJi_zaZ1Uj7r-sFtPbMiaAfmDbSB9QQ9QX8QPH4BgGXQDQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LToNAFL3RaqIb6zPW5yx0SQQ6UDAxhlSN1UpMrKZxgzPDoG5Aba3pT_mN3svDx8adCxesIEOYe7ivmTkHYEf6WpD4iZFrpXIhpCF9pQ3EjpW4luvaeTPnptsKQ6_f9y8n4L06C0PbKiufmDvqOFPUI99r2iZGajoGevj0bJBqFK2uVhIaBSzO9fgNS7bBQecI7btr2yfHvfapUaoKGAprE8-QmDBwL8HazJYOl0q1Ym6JWDS1j3hUGiOqF7tK-K5MOEVnx9eYc2Po5onwpNXEcSdhinMslvD_uXRuP3s6JiYbbs78iYGUWFNb_fK0HqYp_l7nLGhfBViT2kQV6tIS5c9o-DMY5BHupP7f5mYe5spcmgUF-BdgQqeLUK90Kljptpbg7jh9IFqR9J61xxLz3VKzj_UKkaJ8hIJJg3W-UZTus4CF2UjjK0rmdTbM6ImXV-oxsiM9zDeypctw_SffuQK1NEv1KjDOY1Ny33RjLjheUiae5bSkFMQN54gGGJWFo6eCQCSiwosQERWIiAgRUYmIBmxUNo5KdzKIvgy89vvtbZg57V10o24nPF-HWRq46BdtQA0nR2_CtBoNHwcvWzlyGdz9NRw-ANLrJgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Cybersecurity+Through+Artificial+Intelligence%3A+A+Novel+Approach+to+Intrusion+Detection&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Alzaylaee%2C+Mohammed+K.&rft.date=2025&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=16&rft.issue=4&rft_id=info:doi/10.14569%2FIJACSA.2025.0160458&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2025_0160458
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon