A new approach data processing: density-based spatial clustering of applications with noise (DBSCAN) clustering using game-theory
Due to the unpredictable growth of data in various fields, rapid clustering of big data is seriously needed in order to identify the hidden structure of data and discover the relationships between objects. Among clustering methods, density-based clustering methods have an acceptable processing speed...
Saved in:
| Published in: | Soft computing (Berlin, Germany) Vol. 29; no. 3; pp. 1331 - 1346 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Heidelberg
Springer Nature B.V
01.02.2025
|
| Subjects: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Due to the unpredictable growth of data in various fields, rapid clustering of big data is seriously needed in order to identify the hidden structure of data and discover the relationships between objects. Among clustering methods, density-based clustering methods have an acceptable processing speed for dealing with big data with high dimensions. However, some methods have fixed parameters that are certainly not optimized for all sections. In addition, the complexity of these clustering methods strongly depends on the number of objects. In this paper, a clustering method is presented in order to increase clustering performance and parameter sensitivity according to game-theory and using the concept of Nash equilibrium and dense games, the optimal parameter for clustering is selected and between noise and points clusters make a difference. This method includes (1) searching the grid with several spaces in which there is no cluster, (2) identifying the player through high density data points in order to determine the parameters and (3) combining the clusters to make the game and (4) merging the nearby clusters. The performance of the proposed method was evaluated in four big synthetic datasets, eight real datasets labeled and unlabeled. The obtained results indicate the superiority of the proposed method over SOM, K-means, DBSCAN, SCGPSC methods in terms of accuracy and purity in processing time. |
|---|---|
| AbstractList | Due to the unpredictable growth of data in various fields, rapid clustering of big data is seriously needed in order to identify the hidden structure of data and discover the relationships between objects. Among clustering methods, density-based clustering methods have an acceptable processing speed for dealing with big data with high dimensions. However, some methods have fixed parameters that are certainly not optimized for all sections. In addition, the complexity of these clustering methods strongly depends on the number of objects. In this paper, a clustering method is presented in order to increase clustering performance and parameter sensitivity according to game-theory and using the concept of Nash equilibrium and dense games, the optimal parameter for clustering is selected and between noise and points clusters make a difference. This method includes (1) searching the grid with several spaces in which there is no cluster, (2) identifying the player through high density data points in order to determine the parameters and (3) combining the clusters to make the game and (4) merging the nearby clusters. The performance of the proposed method was evaluated in four big synthetic datasets, eight real datasets labeled and unlabeled. The obtained results indicate the superiority of the proposed method over SOM, K-means, DBSCAN, SCGPSC methods in terms of accuracy and purity in processing time. |
| Author | Kazemi, Uranus Soleimani, Seyfollah |
| Author_xml | – sequence: 1 givenname: Uranus surname: Kazemi fullname: Kazemi, Uranus – sequence: 2 givenname: Seyfollah surname: Soleimani fullname: Soleimani, Seyfollah |
| BookMark | eNp9UMtOwzAQtBBIPH-AkyUucDCsnThOuJXylCo4AGfLiTetUUiK7Qr1yJ_jthwQB7SHHWlnZjWzT7b7oUdCjjmccwB1EQAkAAMhGYccJJNbZI_nWcZUrqrtNRZMFXm2S_ZDeAMQXMlsj3yNaI-f1MznfjDNjFoTDU24wRBcP72kFvvg4pLVJqClYW6iMx1tukWI6BODDu1K3bkmXYY-0E8XZ7QfXEB6en31PB49nv2mL1a2dGrekcUZDn55SHZa0wU8-tkH5PX25mV8zyZPdw_j0YQ1vILIWijzAlBVwtZpSlSQWxDGFrWCujZ5K2RdZKYpTZkjWiVsUdoKC1tL4MJkB-Rk45vSfSwwRP02LHyfXuqMKwFcVmWWWOWG1fghBI-tblxcJ4veuE5z0KvC9aZwnQrX68K1TFLxRzr37t345X-ib5umhzU |
| CitedBy_id | crossref_primary_10_1007_s11227_025_07502_5 crossref_primary_10_1016_j_atech_2025_101277 crossref_primary_10_1007_s11227_025_07329_0 crossref_primary_10_1038_s41598_025_07404_9 |
| Cites_doi | 10.1016/j.oceaneng.2024.119189 10.1007/978-1-349-20181-5_19 10.1016/j.chemer.2024.126094 10.1007/s10115-023-01952-0 10.1007/978-981-99-6952-4_4 10.1002/lipi.19910931311 10.1016/j.compchemeng.2024.108646 10.1016/j.neucom.2020.07.061 10.1088/1572-9494/acbf24 10.1016/0146-664X(80)90054-4 10.54914/jtt.v10i1.1189 10.1007/978-3-319-09156-3_49 10.1016/j.jksuci.2024.102002 10.1007/s13042-024-02143-1 10.1037/met0000049 10.1007/s00500-023-09610-x 10.1016/j.compbiomed.2023.107895 10.1007/s40998-020-00396-4 10.1039/D3AY02037A 10.1016/j.rineng.2024.101995 10.1109/ACCESS.2020.2972034 10.1007/s11071-023-08260-w 10.1016/j.ins.2023.119788 10.1007/s12346-024-01025-9 10.1016/j.eswa.2021.115620 10.1007/s13042-024-02104-8 10.1007/s00366-024-01955-7 10.1016/0377-0427(87)90125-7 10.1109/ICSSSM.2007.4280175 10.1016/j.psychres.2023.115265 10.1016/j.ins.2023.119864 10.1016/j.aml.2021.107858 10.1016/j.pmcj.2022.101687 10.1155/2024/6150717 10.54033/cadpedv21n3-141 10.1016/j.aml.2024.109018 10.1016/j.future.2024.03.042 10.1109/TKDE.2017.2787640 10.1016/j.knosys.2024.112436 10.1016/j.tust.2023.105532 10.1007/s12346-024-01034-8 10.1007/s11071-023-09145-8 10.1007/s12243-024-01025-5 10.1007/s11227-023-05504-9 10.1007/s40820-024-01489-z 10.1007/s10957-009-9588-2 10.3390/pr11041240 10.1007/BF01737559 10.1016/j.engappai.2023.107572 10.5120/15890-5059 10.1348/000711005X48266 10.22044/jadm.2022.11499.2309 10.1016/j.datak.2021.101922 10.1016/j.iotcps.2024.02.002 10.1007/978-3-030-95380-5_4 10.3390/e26030268 10.1007/s00500-023-09399-9 10.1109/OCTA49274.2020.9151867 10.1007/s00500-024-09695-y 10.1016/j.aml.2022.108476 10.1016/j.asoc.2024.111419 10.1007/s00170-024-13268-6 10.1098/rsif.2023.0720 10.1016/j.patcog.2022.109062 10.1049/ccs2.12015 10.1002/dac.5176 10.1007/978-3-031-05752-6_15 10.1007/s10107-017-1148-1 10.1007/s12346-024-01045-5 10.1016/j.ins.2022.06.040 10.1109/IFEEA51475.2020.00199 10.1016/j.epsr.2023.109644 10.1063/5.0170506 10.1016/j.apenergy.2024.123798 10.1007/BF01198732 |
| ContentType | Journal Article |
| Copyright | Copyright Springer Nature B.V. Feb 2025 |
| Copyright_xml | – notice: Copyright Springer Nature B.V. Feb 2025 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s00500-025-10405-5 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-7479 |
| EndPage | 1346 |
| ExternalDocumentID | 10_1007_s00500_025_10405_5 |
| GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PHGZM PHGZT PQGLB PT4 PT5 QOS R89 R9I RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR AESKC JQ2 |
| ID | FETCH-LOGICAL-c190t-f08460e792dbdbd8e704d02ad6b70bba4f25b63ac8a84eed72d68d9e6db5012a3 |
| IEDL.DBID | RSV |
| ISSN | 1432-7643 |
| IngestDate | Wed Nov 05 06:51:11 EST 2025 Sat Nov 29 08:13:35 EST 2025 Tue Nov 18 22:38:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c190t-f08460e792dbdbd8e704d02ad6b70bba4f25b63ac8a84eed72d68d9e6db5012a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3172015983 |
| PQPubID | 2043697 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3172015983 crossref_citationtrail_10_1007_s00500_025_10405_5 crossref_primary_10_1007_s00500_025_10405_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-00 20250201 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Heidelberg |
| PublicationPlace_xml | – name: Heidelberg |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | FJ Maldonado-Carrascosa (10405_CR49) 2024; 372 10405_CR44 10405_CR45 10405_CR40 SDS Mustapha (10405_CR51) 2024; 4 C Zhao (10405_CR78) 2024; 26 10405_CR1 SS Li (10405_CR41) 2020; 8 10405_CR2 A Bryant (10405_CR3) 2017; 30 TY Zhou (10405_CR79) 2023; 111 T Li (10405_CR42) 2024; 36 K Suhail (10405_CR65) 2024; 169 A Latifi-Pakdehi (10405_CR39) 2021; 135 M Gupta (10405_CR22) 2022; 35 Y Li (10405_CR43) 2024; 112 M Shafipour (10405_CR60) 2021; 185 XT Gao (10405_CR16) 2022; 128 U Kazemi (10405_CR33) 2021 10405_CR11 R Schneiders (10405_CR59) 1996; 12 A Karthikram (10405_CR31) 2024; 28 S Ma (10405_CR47) 2024; 144 10405_CR10 10405_CR52 M Etezadifar (10405_CR9) 2023; 223 10405_CR19 C Holder (10405_CR24) 2024; 66 10405_CR18 10405_CR8 M Wang (10405_CR68) 2022; 607 JS Pang (10405_CR54) 2017; 165 XY Gao (10405_CR12) 2024; 23 S Guo (10405_CR21) 2024; 312 XL Lv (10405_CR46) 2024; 129 H Tu (10405_CR66) 2024; 654 10405_CR69 10405_CR23 10405_CR20 XY Gao (10405_CR15) 2024; 23 10405_CR62 A Rajalakshmi (10405_CR55) 2024; 28 XH Wu (10405_CR71) 2023; 137 XY Gao (10405_CR13) 2024; 152 10405_CR28 10405_CR27 PJ Rousseeuw (10405_CR58) 1987; 20 L Yang (10405_CR74) 2020; 415 S Hu (10405_CR26) 2023; 11 J Hou (10405_CR25) 2023; 134 A Karami (10405_CR30) 2014; 91 H Mei (10405_CR50) 2024; 16 D Steinley (10405_CR63) 2006; 59 V Capraro (10405_CR4) 2024; 21 10405_CR61 JB Rosell (10405_CR56) 1991; 93 JH Jung (10405_CR29) 2024; 2024 U Kazemi (10405_CR32) 2017; 2 10405_CR35 XY Gao (10405_CR17) 2023; 75 10405_CR36 XY Gao (10405_CR14) 2024; 23 J Xie (10405_CR72) 2024; 653 10405_CR77 10405_CR34 G Yao (10405_CR75) 2021; 3 10405_CR76 10405_CR73 E Cesario (10405_CR5) 2022; 86 PE Danielsson (10405_CR7) 1980; 14 AS Nowak (10405_CR53) 2010; 144 D Steinley (10405_CR64) 2016; 21 E Cesario (10405_CR6) 2024; 157 10405_CR37 10405_CR38 RW Rosenthal (10405_CR57) 1973; 2 B Ustubioglu (10405_CR67) 2024; 80 A Mahmoud (10405_CR48) 2024; 131 10405_CR70 |
| References_xml | – volume: 312 start-page: 119189 year: 2024 ident: 10405_CR21 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.119189 – ident: 10405_CR37 doi: 10.1007/978-1-349-20181-5_19 – ident: 10405_CR23 doi: 10.1016/j.chemer.2024.126094 – volume: 66 start-page: 765 issue: 2 year: 2024 ident: 10405_CR24 publication-title: Knowl Inf Syst doi: 10.1007/s10115-023-01952-0 – ident: 10405_CR28 doi: 10.1007/978-981-99-6952-4_4 – volume: 93 start-page: 526 issue: S4 year: 1991 ident: 10405_CR56 publication-title: Lipid/fett doi: 10.1002/lipi.19910931311 – ident: 10405_CR2 doi: 10.1016/j.compchemeng.2024.108646 – volume: 415 start-page: 295 year: 2020 ident: 10405_CR74 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – volume: 2 start-page: 1 issue: 3 year: 2017 ident: 10405_CR32 publication-title: Journal of Embedded Systems and Processing – volume: 75 issue: 11 year: 2023 ident: 10405_CR17 publication-title: Commun Theor Phys doi: 10.1088/1572-9494/acbf24 – volume: 14 start-page: 227 issue: 3 year: 1980 ident: 10405_CR7 publication-title: Comput Graphics Image Process doi: 10.1016/0146-664X(80)90054-4 – ident: 10405_CR19 doi: 10.54914/jtt.v10i1.1189 – ident: 10405_CR40 – ident: 10405_CR61 doi: 10.1007/978-3-319-09156-3_49 – volume: 36 start-page: 102002 issue: 3 year: 2024 ident: 10405_CR42 publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2024.102002 – ident: 10405_CR27 doi: 10.54914/jtt.v10i1.1189 – ident: 10405_CR70 doi: 10.1007/s13042-024-02143-1 – volume: 21 start-page: 261 issue: 2 year: 2016 ident: 10405_CR64 publication-title: Psychol Methods doi: 10.1037/met0000049 – ident: 10405_CR62 doi: 10.1007/s00500-023-09610-x – volume: 169 year: 2024 ident: 10405_CR65 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.107895 – year: 2021 ident: 10405_CR33 publication-title: Iranian Journal of Science and Technology, Transactions of Electrical Engineering. doi: 10.1007/s40998-020-00396-4 – ident: 10405_CR45 doi: 10.1039/D3AY02037A – ident: 10405_CR73 doi: 10.1016/j.rineng.2024.101995 – volume: 8 start-page: 47468 year: 2020 ident: 10405_CR41 publication-title: Ieee Access doi: 10.1109/ACCESS.2020.2972034 – volume: 111 start-page: 8647 issue: 9 year: 2023 ident: 10405_CR79 publication-title: Nonlinear Dyn doi: 10.1007/s11071-023-08260-w – volume: 653 year: 2024 ident: 10405_CR72 publication-title: Inf Sci doi: 10.1016/j.ins.2023.119788 – volume: 23 start-page: 1 issue: 4 year: 2024 ident: 10405_CR14 publication-title: Qual Theory Dyn Syst doi: 10.1007/s12346-024-01025-9 – volume: 185 year: 2021 ident: 10405_CR60 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115620 – ident: 10405_CR69 doi: 10.1007/s13042-024-02104-8 – ident: 10405_CR35 doi: 10.1007/s00366-024-01955-7 – volume: 20 start-page: 53 year: 1987 ident: 10405_CR58 publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90125-7 – ident: 10405_CR44 doi: 10.1109/ICSSSM.2007.4280175 – ident: 10405_CR18 doi: 10.1016/j.psychres.2023.115265 – volume: 654 year: 2024 ident: 10405_CR66 publication-title: Inf Sci doi: 10.1016/j.ins.2023.119864 – volume: 128 year: 2022 ident: 10405_CR16 publication-title: Appl Math Lett doi: 10.1016/j.aml.2021.107858 – volume: 86 start-page: 101687 year: 2022 ident: 10405_CR5 publication-title: Pervasive Mob Comput doi: 10.1016/j.pmcj.2022.101687 – volume: 2024 start-page: 6150717 issue: 1 year: 2024 ident: 10405_CR29 publication-title: Struct Control Health Monit doi: 10.1155/2024/6150717 – ident: 10405_CR1 doi: 10.54033/cadpedv21n3-141 – volume: 152 year: 2024 ident: 10405_CR13 publication-title: Appl Math Lett doi: 10.1016/j.aml.2024.109018 – volume: 157 start-page: 226 year: 2024 ident: 10405_CR6 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2024.03.042 – volume: 30 start-page: 1109 issue: 6 year: 2017 ident: 10405_CR3 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2787640 – ident: 10405_CR36 doi: 10.1016/j.knosys.2024.112436 – volume: 144 start-page: 105532 year: 2024 ident: 10405_CR47 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2023.105532 – volume: 23 start-page: 181 issue: 4 year: 2024 ident: 10405_CR15 publication-title: Qual Theory Dyn Syst doi: 10.1007/s12346-024-01034-8 – volume: 112 start-page: 2119 issue: 3 year: 2024 ident: 10405_CR43 publication-title: Nonlinear Dyn doi: 10.1007/s11071-023-09145-8 – ident: 10405_CR52 doi: 10.1007/s12243-024-01025-5 – volume: 80 start-page: 486 issue: 1 year: 2024 ident: 10405_CR67 publication-title: J Supercomput doi: 10.1007/s11227-023-05504-9 – volume: 16 start-page: 269 issue: 1 year: 2024 ident: 10405_CR50 publication-title: Nano-Micro Letters doi: 10.1007/s40820-024-01489-z – volume: 144 start-page: 88 issue: 1 year: 2010 ident: 10405_CR53 publication-title: J Optim Theory Appl doi: 10.1007/s10957-009-9588-2 – volume: 11 start-page: 1240 issue: 4 year: 2023 ident: 10405_CR26 publication-title: Processes doi: 10.3390/pr11041240 – volume: 2 start-page: 65 year: 1973 ident: 10405_CR57 publication-title: Internat J Game Theory doi: 10.1007/BF01737559 – volume: 129 year: 2024 ident: 10405_CR46 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.107572 – volume: 91 start-page: 1 issue: 7 year: 2014 ident: 10405_CR30 publication-title: International Journal of Computer Applications doi: 10.5120/15890-5059 – volume: 59 start-page: 1 issue: 1 year: 2006 ident: 10405_CR63 publication-title: Br J Math Stat Psychol doi: 10.1348/000711005X48266 – ident: 10405_CR10 doi: 10.22044/jadm.2022.11499.2309 – volume: 135 start-page: 101922 year: 2021 ident: 10405_CR39 publication-title: Data Knowl Eng doi: 10.1016/j.datak.2021.101922 – volume: 4 start-page: 68 year: 2024 ident: 10405_CR51 publication-title: Internet of Things and Cyber-Physical Systems doi: 10.1016/j.iotcps.2024.02.002 – ident: 10405_CR20 doi: 10.1007/978-3-030-95380-5_4 – volume: 26 start-page: 268 issue: 3 year: 2024 ident: 10405_CR78 publication-title: Entropy doi: 10.3390/e26030268 – volume: 28 start-page: 627 issue: 1 year: 2024 ident: 10405_CR31 publication-title: Soft Comput doi: 10.1007/s00500-023-09399-9 – ident: 10405_CR34 doi: 10.1109/OCTA49274.2020.9151867 – volume: 28 start-page: 4607 issue: 5 year: 2024 ident: 10405_CR55 publication-title: Soft Comput doi: 10.1007/s00500-024-09695-y – volume: 137 year: 2023 ident: 10405_CR71 publication-title: Appl Math Lett doi: 10.1016/j.aml.2022.108476 – ident: 10405_CR38 doi: 10.1016/j.asoc.2024.111419 – volume: 131 start-page: 4935 issue: 9 year: 2024 ident: 10405_CR48 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-024-13268-6 – volume: 21 start-page: 20230720 issue: 212 year: 2024 ident: 10405_CR4 publication-title: J R Soc Interface doi: 10.1098/rsif.2023.0720 – volume: 134 start-page: 109062 year: 2023 ident: 10405_CR25 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2022.109062 – volume: 3 start-page: 154 issue: 2 year: 2021 ident: 10405_CR75 publication-title: Cognitive Computation and Systems doi: 10.1049/ccs2.12015 – volume: 35 issue: 10 year: 2022 ident: 10405_CR22 publication-title: Int J Commun Syst doi: 10.1002/dac.5176 – ident: 10405_CR11 doi: 10.1007/978-3-031-05752-6_15 – volume: 165 start-page: 235 year: 2017 ident: 10405_CR54 publication-title: Math Program doi: 10.1007/s10107-017-1148-1 – volume: 23 start-page: 202 issue: 5 year: 2024 ident: 10405_CR12 publication-title: Qualitative Theory of Dynamical Systems doi: 10.1007/s12346-024-01045-5 – volume: 607 start-page: 1136 year: 2022 ident: 10405_CR68 publication-title: Inf Sci doi: 10.1016/j.ins.2022.06.040 – ident: 10405_CR8 doi: 10.1109/IFEEA51475.2020.00199 – volume: 223 year: 2023 ident: 10405_CR9 publication-title: Electric Power Syst Res doi: 10.1016/j.epsr.2023.109644 – ident: 10405_CR76 doi: 10.1063/5.0170506 – volume: 372 year: 2024 ident: 10405_CR49 publication-title: Appl Energy doi: 10.1016/j.apenergy.2024.123798 – ident: 10405_CR77 – volume: 12 start-page: 168 year: 1996 ident: 10405_CR59 publication-title: Engineering with Computers doi: 10.1007/BF01198732 |
| SSID | ssj0021753 |
| Score | 2.4061422 |
| Snippet | Due to the unpredictable growth of data in various fields, rapid clustering of big data is seriously needed in order to identify the hidden structure of data... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1331 |
| SubjectTerms | Accuracy Algorithms Big Data Clustering Data compression Data mining Data points Data processing Datasets Density Efficiency Fluid dynamics Game theory Massive data points Methods Optimization Parameter sensitivity Spatial data Synthetic data |
| Title | A new approach data processing: density-based spatial clustering of applications with noise (DBSCAN) clustering using game-theory |
| URI | https://www.proquest.com/docview/3172015983 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5jePDi_InTKTl4UDSQpj-SepvT4WmIU9mtJE06BrMbayfs6H_uS9eODVQYvSahvNfk-17z3vcQulKBaziVnBg4-YiXUEpEol0CaBJCQJIoaUTRbIL3emIwCF9q6O7PG3wr9-nb6mdmFTOBXhBbUe4EzLYreO1_rKKrUnIS8B8oI-BsWSHz-xKbKLR5CBfI0m1s9077aK9kkLi9dPkBqpn0EDWq7gy43KxH6LuNgTLjSjQc21xQPF3WBQBe3WNtc9fzBbFApnFmU6th3Xg8t9oJMAJPErx-v43tP1ucTkaZwdePD_1Ou3ezPtym0A_xUH4aUpRHLo7Re_fprfNMyoYLJAZekJOEAhuhhodMK3gEeNHTlEkdKE6Vkl7CfHCujIUUHoArZzoQOjSBVj4AnXRPUD2dpOYUYckdCTNcyZjj6ViGUlDpQXwSK-ZKbprIqRwQxaUauW2KMY5WOsqFjSOwcVTYOPKb6HY1Z7rU4vh3dKvya1TuyywCtgSMxw-Fe7bVYudol1lvF-naLVTPZ3NzgXbir3yUzS6LD_EHw0jVVQ |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+approach+data+processing%3A+density-based+spatial+clustering+of+applications+with+noise+%28DBSCAN%29+clustering+using+game-theory&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Kazemi%2C+Uranus&rft.au=Soleimani%2C+Seyfollah&rft.date=2025-02-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=29&rft.issue=3&rft.spage=1331&rft.epage=1346&rft_id=info:doi/10.1007%2Fs00500-025-10405-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_025_10405_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |