A new approach data processing: density-based spatial clustering of applications with noise (DBSCAN) clustering using game-theory

Due to the unpredictable growth of data in various fields, rapid clustering of big data is seriously needed in order to identify the hidden structure of data and discover the relationships between objects. Among clustering methods, density-based clustering methods have an acceptable processing speed...

Full description

Saved in:
Bibliographic Details
Published in:Soft computing (Berlin, Germany) Vol. 29; no. 3; pp. 1331 - 1346
Main Authors: Kazemi, Uranus, Soleimani, Seyfollah
Format: Journal Article
Language:English
Published: Heidelberg Springer Nature B.V 01.02.2025
Subjects:
ISSN:1432-7643, 1433-7479
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to the unpredictable growth of data in various fields, rapid clustering of big data is seriously needed in order to identify the hidden structure of data and discover the relationships between objects. Among clustering methods, density-based clustering methods have an acceptable processing speed for dealing with big data with high dimensions. However, some methods have fixed parameters that are certainly not optimized for all sections. In addition, the complexity of these clustering methods strongly depends on the number of objects. In this paper, a clustering method is presented in order to increase clustering performance and parameter sensitivity according to game-theory and using the concept of Nash equilibrium and dense games, the optimal parameter for clustering is selected and between noise and points clusters make a difference. This method includes (1) searching the grid with several spaces in which there is no cluster, (2) identifying the player through high density data points in order to determine the parameters and (3) combining the clusters to make the game and (4) merging the nearby clusters. The performance of the proposed method was evaluated in four big synthetic datasets, eight real datasets labeled and unlabeled. The obtained results indicate the superiority of the proposed method over SOM, K-means, DBSCAN, SCGPSC methods in terms of accuracy and purity in processing time.
AbstractList Due to the unpredictable growth of data in various fields, rapid clustering of big data is seriously needed in order to identify the hidden structure of data and discover the relationships between objects. Among clustering methods, density-based clustering methods have an acceptable processing speed for dealing with big data with high dimensions. However, some methods have fixed parameters that are certainly not optimized for all sections. In addition, the complexity of these clustering methods strongly depends on the number of objects. In this paper, a clustering method is presented in order to increase clustering performance and parameter sensitivity according to game-theory and using the concept of Nash equilibrium and dense games, the optimal parameter for clustering is selected and between noise and points clusters make a difference. This method includes (1) searching the grid with several spaces in which there is no cluster, (2) identifying the player through high density data points in order to determine the parameters and (3) combining the clusters to make the game and (4) merging the nearby clusters. The performance of the proposed method was evaluated in four big synthetic datasets, eight real datasets labeled and unlabeled. The obtained results indicate the superiority of the proposed method over SOM, K-means, DBSCAN, SCGPSC methods in terms of accuracy and purity in processing time.
Author Kazemi, Uranus
Soleimani, Seyfollah
Author_xml – sequence: 1
  givenname: Uranus
  surname: Kazemi
  fullname: Kazemi, Uranus
– sequence: 2
  givenname: Seyfollah
  surname: Soleimani
  fullname: Soleimani, Seyfollah
BookMark eNp9UMtOwzAQtBBIPH-AkyUucDCsnThOuJXylCo4AGfLiTetUUiK7Qr1yJ_jthwQB7SHHWlnZjWzT7b7oUdCjjmccwB1EQAkAAMhGYccJJNbZI_nWcZUrqrtNRZMFXm2S_ZDeAMQXMlsj3yNaI-f1MznfjDNjFoTDU24wRBcP72kFvvg4pLVJqClYW6iMx1tukWI6BODDu1K3bkmXYY-0E8XZ7QfXEB6en31PB49nv2mL1a2dGrekcUZDn55SHZa0wU8-tkH5PX25mV8zyZPdw_j0YQ1vILIWijzAlBVwtZpSlSQWxDGFrWCujZ5K2RdZKYpTZkjWiVsUdoKC1tL4MJkB-Rk45vSfSwwRP02LHyfXuqMKwFcVmWWWOWG1fghBI-tblxcJ4veuE5z0KvC9aZwnQrX68K1TFLxRzr37t345X-ib5umhzU
CitedBy_id crossref_primary_10_1007_s11227_025_07502_5
crossref_primary_10_1016_j_atech_2025_101277
crossref_primary_10_1007_s11227_025_07329_0
crossref_primary_10_1038_s41598_025_07404_9
Cites_doi 10.1016/j.oceaneng.2024.119189
10.1007/978-1-349-20181-5_19
10.1016/j.chemer.2024.126094
10.1007/s10115-023-01952-0
10.1007/978-981-99-6952-4_4
10.1002/lipi.19910931311
10.1016/j.compchemeng.2024.108646
10.1016/j.neucom.2020.07.061
10.1088/1572-9494/acbf24
10.1016/0146-664X(80)90054-4
10.54914/jtt.v10i1.1189
10.1007/978-3-319-09156-3_49
10.1016/j.jksuci.2024.102002
10.1007/s13042-024-02143-1
10.1037/met0000049
10.1007/s00500-023-09610-x
10.1016/j.compbiomed.2023.107895
10.1007/s40998-020-00396-4
10.1039/D3AY02037A
10.1016/j.rineng.2024.101995
10.1109/ACCESS.2020.2972034
10.1007/s11071-023-08260-w
10.1016/j.ins.2023.119788
10.1007/s12346-024-01025-9
10.1016/j.eswa.2021.115620
10.1007/s13042-024-02104-8
10.1007/s00366-024-01955-7
10.1016/0377-0427(87)90125-7
10.1109/ICSSSM.2007.4280175
10.1016/j.psychres.2023.115265
10.1016/j.ins.2023.119864
10.1016/j.aml.2021.107858
10.1016/j.pmcj.2022.101687
10.1155/2024/6150717
10.54033/cadpedv21n3-141
10.1016/j.aml.2024.109018
10.1016/j.future.2024.03.042
10.1109/TKDE.2017.2787640
10.1016/j.knosys.2024.112436
10.1016/j.tust.2023.105532
10.1007/s12346-024-01034-8
10.1007/s11071-023-09145-8
10.1007/s12243-024-01025-5
10.1007/s11227-023-05504-9
10.1007/s40820-024-01489-z
10.1007/s10957-009-9588-2
10.3390/pr11041240
10.1007/BF01737559
10.1016/j.engappai.2023.107572
10.5120/15890-5059
10.1348/000711005X48266
10.22044/jadm.2022.11499.2309
10.1016/j.datak.2021.101922
10.1016/j.iotcps.2024.02.002
10.1007/978-3-030-95380-5_4
10.3390/e26030268
10.1007/s00500-023-09399-9
10.1109/OCTA49274.2020.9151867
10.1007/s00500-024-09695-y
10.1016/j.aml.2022.108476
10.1016/j.asoc.2024.111419
10.1007/s00170-024-13268-6
10.1098/rsif.2023.0720
10.1016/j.patcog.2022.109062
10.1049/ccs2.12015
10.1002/dac.5176
10.1007/978-3-031-05752-6_15
10.1007/s10107-017-1148-1
10.1007/s12346-024-01045-5
10.1016/j.ins.2022.06.040
10.1109/IFEEA51475.2020.00199
10.1016/j.epsr.2023.109644
10.1063/5.0170506
10.1016/j.apenergy.2024.123798
10.1007/BF01198732
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Feb 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00500-025-10405-5
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-7479
EndPage 1346
ExternalDocumentID 10_1007_s00500_025_10405_5
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
AESKC
JQ2
ID FETCH-LOGICAL-c190t-f08460e792dbdbd8e704d02ad6b70bba4f25b63ac8a84eed72d68d9e6db5012a3
IEDL.DBID RSV
ISSN 1432-7643
IngestDate Wed Nov 05 06:51:11 EST 2025
Sat Nov 29 08:13:35 EST 2025
Tue Nov 18 22:38:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c190t-f08460e792dbdbd8e704d02ad6b70bba4f25b63ac8a84eed72d68d9e6db5012a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3172015983
PQPubID 2043697
PageCount 16
ParticipantIDs proquest_journals_3172015983
crossref_citationtrail_10_1007_s00500_025_10405_5
crossref_primary_10_1007_s00500_025_10405_5
PublicationCentury 2000
PublicationDate 2025-02-00
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-00
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Soft computing (Berlin, Germany)
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References FJ Maldonado-Carrascosa (10405_CR49) 2024; 372
10405_CR44
10405_CR45
10405_CR40
SDS Mustapha (10405_CR51) 2024; 4
C Zhao (10405_CR78) 2024; 26
10405_CR1
SS Li (10405_CR41) 2020; 8
10405_CR2
A Bryant (10405_CR3) 2017; 30
TY Zhou (10405_CR79) 2023; 111
T Li (10405_CR42) 2024; 36
K Suhail (10405_CR65) 2024; 169
A Latifi-Pakdehi (10405_CR39) 2021; 135
M Gupta (10405_CR22) 2022; 35
Y Li (10405_CR43) 2024; 112
M Shafipour (10405_CR60) 2021; 185
XT Gao (10405_CR16) 2022; 128
U Kazemi (10405_CR33) 2021
10405_CR11
R Schneiders (10405_CR59) 1996; 12
A Karthikram (10405_CR31) 2024; 28
S Ma (10405_CR47) 2024; 144
10405_CR10
10405_CR52
M Etezadifar (10405_CR9) 2023; 223
10405_CR19
C Holder (10405_CR24) 2024; 66
10405_CR18
10405_CR8
M Wang (10405_CR68) 2022; 607
JS Pang (10405_CR54) 2017; 165
XY Gao (10405_CR12) 2024; 23
S Guo (10405_CR21) 2024; 312
XL Lv (10405_CR46) 2024; 129
H Tu (10405_CR66) 2024; 654
10405_CR69
10405_CR23
10405_CR20
XY Gao (10405_CR15) 2024; 23
10405_CR62
A Rajalakshmi (10405_CR55) 2024; 28
XH Wu (10405_CR71) 2023; 137
XY Gao (10405_CR13) 2024; 152
10405_CR28
10405_CR27
PJ Rousseeuw (10405_CR58) 1987; 20
L Yang (10405_CR74) 2020; 415
S Hu (10405_CR26) 2023; 11
J Hou (10405_CR25) 2023; 134
A Karami (10405_CR30) 2014; 91
H Mei (10405_CR50) 2024; 16
D Steinley (10405_CR63) 2006; 59
V Capraro (10405_CR4) 2024; 21
10405_CR61
JB Rosell (10405_CR56) 1991; 93
JH Jung (10405_CR29) 2024; 2024
U Kazemi (10405_CR32) 2017; 2
10405_CR35
XY Gao (10405_CR17) 2023; 75
10405_CR36
XY Gao (10405_CR14) 2024; 23
J Xie (10405_CR72) 2024; 653
10405_CR77
10405_CR34
G Yao (10405_CR75) 2021; 3
10405_CR76
10405_CR73
E Cesario (10405_CR5) 2022; 86
PE Danielsson (10405_CR7) 1980; 14
AS Nowak (10405_CR53) 2010; 144
D Steinley (10405_CR64) 2016; 21
E Cesario (10405_CR6) 2024; 157
10405_CR37
10405_CR38
RW Rosenthal (10405_CR57) 1973; 2
B Ustubioglu (10405_CR67) 2024; 80
A Mahmoud (10405_CR48) 2024; 131
10405_CR70
References_xml – volume: 312
  start-page: 119189
  year: 2024
  ident: 10405_CR21
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.119189
– ident: 10405_CR37
  doi: 10.1007/978-1-349-20181-5_19
– ident: 10405_CR23
  doi: 10.1016/j.chemer.2024.126094
– volume: 66
  start-page: 765
  issue: 2
  year: 2024
  ident: 10405_CR24
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-023-01952-0
– ident: 10405_CR28
  doi: 10.1007/978-981-99-6952-4_4
– volume: 93
  start-page: 526
  issue: S4
  year: 1991
  ident: 10405_CR56
  publication-title: Lipid/fett
  doi: 10.1002/lipi.19910931311
– ident: 10405_CR2
  doi: 10.1016/j.compchemeng.2024.108646
– volume: 415
  start-page: 295
  year: 2020
  ident: 10405_CR74
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– volume: 2
  start-page: 1
  issue: 3
  year: 2017
  ident: 10405_CR32
  publication-title: Journal of Embedded Systems and Processing
– volume: 75
  issue: 11
  year: 2023
  ident: 10405_CR17
  publication-title: Commun Theor Phys
  doi: 10.1088/1572-9494/acbf24
– volume: 14
  start-page: 227
  issue: 3
  year: 1980
  ident: 10405_CR7
  publication-title: Comput Graphics Image Process
  doi: 10.1016/0146-664X(80)90054-4
– ident: 10405_CR19
  doi: 10.54914/jtt.v10i1.1189
– ident: 10405_CR40
– ident: 10405_CR61
  doi: 10.1007/978-3-319-09156-3_49
– volume: 36
  start-page: 102002
  issue: 3
  year: 2024
  ident: 10405_CR42
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2024.102002
– ident: 10405_CR27
  doi: 10.54914/jtt.v10i1.1189
– ident: 10405_CR70
  doi: 10.1007/s13042-024-02143-1
– volume: 21
  start-page: 261
  issue: 2
  year: 2016
  ident: 10405_CR64
  publication-title: Psychol Methods
  doi: 10.1037/met0000049
– ident: 10405_CR62
  doi: 10.1007/s00500-023-09610-x
– volume: 169
  year: 2024
  ident: 10405_CR65
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.107895
– year: 2021
  ident: 10405_CR33
  publication-title: Iranian Journal of Science and Technology, Transactions of Electrical Engineering.
  doi: 10.1007/s40998-020-00396-4
– ident: 10405_CR45
  doi: 10.1039/D3AY02037A
– ident: 10405_CR73
  doi: 10.1016/j.rineng.2024.101995
– volume: 8
  start-page: 47468
  year: 2020
  ident: 10405_CR41
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2020.2972034
– volume: 111
  start-page: 8647
  issue: 9
  year: 2023
  ident: 10405_CR79
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-023-08260-w
– volume: 653
  year: 2024
  ident: 10405_CR72
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2023.119788
– volume: 23
  start-page: 1
  issue: 4
  year: 2024
  ident: 10405_CR14
  publication-title: Qual Theory Dyn Syst
  doi: 10.1007/s12346-024-01025-9
– volume: 185
  year: 2021
  ident: 10405_CR60
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115620
– ident: 10405_CR69
  doi: 10.1007/s13042-024-02104-8
– ident: 10405_CR35
  doi: 10.1007/s00366-024-01955-7
– volume: 20
  start-page: 53
  year: 1987
  ident: 10405_CR58
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– ident: 10405_CR44
  doi: 10.1109/ICSSSM.2007.4280175
– ident: 10405_CR18
  doi: 10.1016/j.psychres.2023.115265
– volume: 654
  year: 2024
  ident: 10405_CR66
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2023.119864
– volume: 128
  year: 2022
  ident: 10405_CR16
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2021.107858
– volume: 86
  start-page: 101687
  year: 2022
  ident: 10405_CR5
  publication-title: Pervasive Mob Comput
  doi: 10.1016/j.pmcj.2022.101687
– volume: 2024
  start-page: 6150717
  issue: 1
  year: 2024
  ident: 10405_CR29
  publication-title: Struct Control Health Monit
  doi: 10.1155/2024/6150717
– ident: 10405_CR1
  doi: 10.54033/cadpedv21n3-141
– volume: 152
  year: 2024
  ident: 10405_CR13
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2024.109018
– volume: 157
  start-page: 226
  year: 2024
  ident: 10405_CR6
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2024.03.042
– volume: 30
  start-page: 1109
  issue: 6
  year: 2017
  ident: 10405_CR3
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2787640
– ident: 10405_CR36
  doi: 10.1016/j.knosys.2024.112436
– volume: 144
  start-page: 105532
  year: 2024
  ident: 10405_CR47
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2023.105532
– volume: 23
  start-page: 181
  issue: 4
  year: 2024
  ident: 10405_CR15
  publication-title: Qual Theory Dyn Syst
  doi: 10.1007/s12346-024-01034-8
– volume: 112
  start-page: 2119
  issue: 3
  year: 2024
  ident: 10405_CR43
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-023-09145-8
– ident: 10405_CR52
  doi: 10.1007/s12243-024-01025-5
– volume: 80
  start-page: 486
  issue: 1
  year: 2024
  ident: 10405_CR67
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05504-9
– volume: 16
  start-page: 269
  issue: 1
  year: 2024
  ident: 10405_CR50
  publication-title: Nano-Micro Letters
  doi: 10.1007/s40820-024-01489-z
– volume: 144
  start-page: 88
  issue: 1
  year: 2010
  ident: 10405_CR53
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-009-9588-2
– volume: 11
  start-page: 1240
  issue: 4
  year: 2023
  ident: 10405_CR26
  publication-title: Processes
  doi: 10.3390/pr11041240
– volume: 2
  start-page: 65
  year: 1973
  ident: 10405_CR57
  publication-title: Internat J Game Theory
  doi: 10.1007/BF01737559
– volume: 129
  year: 2024
  ident: 10405_CR46
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.107572
– volume: 91
  start-page: 1
  issue: 7
  year: 2014
  ident: 10405_CR30
  publication-title: International Journal of Computer Applications
  doi: 10.5120/15890-5059
– volume: 59
  start-page: 1
  issue: 1
  year: 2006
  ident: 10405_CR63
  publication-title: Br J Math Stat Psychol
  doi: 10.1348/000711005X48266
– ident: 10405_CR10
  doi: 10.22044/jadm.2022.11499.2309
– volume: 135
  start-page: 101922
  year: 2021
  ident: 10405_CR39
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2021.101922
– volume: 4
  start-page: 68
  year: 2024
  ident: 10405_CR51
  publication-title: Internet of Things and Cyber-Physical Systems
  doi: 10.1016/j.iotcps.2024.02.002
– ident: 10405_CR20
  doi: 10.1007/978-3-030-95380-5_4
– volume: 26
  start-page: 268
  issue: 3
  year: 2024
  ident: 10405_CR78
  publication-title: Entropy
  doi: 10.3390/e26030268
– volume: 28
  start-page: 627
  issue: 1
  year: 2024
  ident: 10405_CR31
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-09399-9
– ident: 10405_CR34
  doi: 10.1109/OCTA49274.2020.9151867
– volume: 28
  start-page: 4607
  issue: 5
  year: 2024
  ident: 10405_CR55
  publication-title: Soft Comput
  doi: 10.1007/s00500-024-09695-y
– volume: 137
  year: 2023
  ident: 10405_CR71
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2022.108476
– ident: 10405_CR38
  doi: 10.1016/j.asoc.2024.111419
– volume: 131
  start-page: 4935
  issue: 9
  year: 2024
  ident: 10405_CR48
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-024-13268-6
– volume: 21
  start-page: 20230720
  issue: 212
  year: 2024
  ident: 10405_CR4
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2023.0720
– volume: 134
  start-page: 109062
  year: 2023
  ident: 10405_CR25
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2022.109062
– volume: 3
  start-page: 154
  issue: 2
  year: 2021
  ident: 10405_CR75
  publication-title: Cognitive Computation and Systems
  doi: 10.1049/ccs2.12015
– volume: 35
  issue: 10
  year: 2022
  ident: 10405_CR22
  publication-title: Int J Commun Syst
  doi: 10.1002/dac.5176
– ident: 10405_CR11
  doi: 10.1007/978-3-031-05752-6_15
– volume: 165
  start-page: 235
  year: 2017
  ident: 10405_CR54
  publication-title: Math Program
  doi: 10.1007/s10107-017-1148-1
– volume: 23
  start-page: 202
  issue: 5
  year: 2024
  ident: 10405_CR12
  publication-title: Qualitative Theory of Dynamical Systems
  doi: 10.1007/s12346-024-01045-5
– volume: 607
  start-page: 1136
  year: 2022
  ident: 10405_CR68
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.06.040
– ident: 10405_CR8
  doi: 10.1109/IFEEA51475.2020.00199
– volume: 223
  year: 2023
  ident: 10405_CR9
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2023.109644
– ident: 10405_CR76
  doi: 10.1063/5.0170506
– volume: 372
  year: 2024
  ident: 10405_CR49
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.123798
– ident: 10405_CR77
– volume: 12
  start-page: 168
  year: 1996
  ident: 10405_CR59
  publication-title: Engineering with Computers
  doi: 10.1007/BF01198732
SSID ssj0021753
Score 2.4061422
Snippet Due to the unpredictable growth of data in various fields, rapid clustering of big data is seriously needed in order to identify the hidden structure of data...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1331
SubjectTerms Accuracy
Algorithms
Big Data
Clustering
Data compression
Data mining
Data points
Data processing
Datasets
Density
Efficiency
Fluid dynamics
Game theory
Massive data points
Methods
Optimization
Parameter sensitivity
Spatial data
Synthetic data
Title A new approach data processing: density-based spatial clustering of applications with noise (DBSCAN) clustering using game-theory
URI https://www.proquest.com/docview/3172015983
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5jePDi_InTKTl4UDSQpj-SepvT4WmIU9mtJE06BrMbayfs6H_uS9eODVQYvSahvNfk-17z3vcQulKBaziVnBg4-YiXUEpEol0CaBJCQJIoaUTRbIL3emIwCF9q6O7PG3wr9-nb6mdmFTOBXhBbUe4EzLYreO1_rKKrUnIS8B8oI-BsWSHz-xKbKLR5CBfI0m1s9077aK9kkLi9dPkBqpn0EDWq7gy43KxH6LuNgTLjSjQc21xQPF3WBQBe3WNtc9fzBbFApnFmU6th3Xg8t9oJMAJPErx-v43tP1ucTkaZwdePD_1Ou3ezPtym0A_xUH4aUpRHLo7Re_fprfNMyoYLJAZekJOEAhuhhodMK3gEeNHTlEkdKE6Vkl7CfHCujIUUHoArZzoQOjSBVj4AnXRPUD2dpOYUYckdCTNcyZjj6ViGUlDpQXwSK-ZKbprIqRwQxaUauW2KMY5WOsqFjSOwcVTYOPKb6HY1Z7rU4vh3dKvya1TuyywCtgSMxw-Fe7bVYudol1lvF-naLVTPZ3NzgXbir3yUzS6LD_EHw0jVVQ
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+approach+data+processing%3A+density-based+spatial+clustering+of+applications+with+noise+%28DBSCAN%29+clustering+using+game-theory&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Kazemi%2C+Uranus&rft.au=Soleimani%2C+Seyfollah&rft.date=2025-02-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=29&rft.issue=3&rft.spage=1331&rft.epage=1346&rft_id=info:doi/10.1007%2Fs00500-025-10405-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_025_10405_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon