Classification of Privacy Preserving Data Mining Algorithms: A Review
Nowadays, data from various sources are gathered and stored in databases. The collection of the data does not give a significant impact unless the database owner conducts certain data analysis such as using data mining techniques to the databases. Presently, the development of data mining techniques...
Uložené v:
| Vydané v: | Jurnal elektronika dan telekomunikasi Ročník 20; číslo 2; s. 36 - 46 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Indonesian Institute of Sciences
31.12.2020
|
| Predmet: | |
| ISSN: | 1411-8289, 2527-9955 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Nowadays, data from various sources are gathered and stored in databases. The collection of the data does not give a significant impact unless the database owner conducts certain data analysis such as using data mining techniques to the databases. Presently, the development of data mining techniques and algorithms provides significant benefits for the information extraction process in terms of the quality, accuracy, and precision results. Realizing the fact that performing data mining tasks using some available data mining algorithms may disclose sensitive information of data subject in the databases, an action to protect privacy should be taken into account by the data owner. Therefore, privacy preserving data mining (PPDM) is becoming an emerging field of study in the data mining research group. The main purpose of PPDM is to investigate the side effects of data mining methods that originate from the penetration into the privacy of individuals and organizations. In addition, it guarantees that the data miners cannot reveal any personal sensitive information contained in a database, while at the same time data utility of a sanitized database does not significantly differ from that of the original one. In this paper, we present a wide view of current PPDM techniques by classifying them based on their taxonomy techniques to differentiate the characteristics of each approach. The review of the PPDM methods is described comprehensively to provide a profound understanding of the methods along with advantages, challenges, and future development for researchers and practitioners. |
|---|---|
| AbstractList | Nowadays, data from various sources are gathered and stored in databases. The collection of the data does not give a significant impact unless the database owner conducts certain data analysis such as using data mining techniques to the databases. Presently, the development of data mining techniques and algorithms provides significant benefits for the information extraction process in terms of the quality, accuracy, and precision results. Realizing the fact that performing data mining tasks using some available data mining algorithms may disclose sensitive information of data subject in the databases, an action to protect privacy should be taken into account by the data owner. Therefore, privacy preserving data mining (PPDM) is becoming an emerging field of study in the data mining research group. The main purpose of PPDM is to investigate the side effects of data mining methods that originate from the penetration into the privacy of individuals and organizations. In addition, it guarantees that the data miners cannot reveal any personal sensitive information contained in a database, while at the same time data utility of a sanitized database does not significantly differ from that of the original one. In this paper, we present a wide view of current PPDM techniques by classifying them based on their taxonomy techniques to differentiate the characteristics of each approach. The review of the PPDM methods is described comprehensively to provide a profound understanding of the methods along with advantages, challenges, and future development for researchers and practitioners. |
| Author | Gunawan, Dedi |
| Author_xml | – sequence: 1 givenname: Dedi surname: Gunawan fullname: Gunawan, Dedi |
| BookMark | eNp1kM1KAzEYRYNUsNZuXc8LzJi_yY-7UqsWKoroOmQySU2ZTiQJI769YysuBFf34-PeszjnYNKH3gJwiWCFKIbkamdzNWBYEVZSdgKmuMa8lLKuJ2CKKEKlwEKegXlKOwghhogIzqdgtex0St55o7MPfRFc8RT9oM3nmDbZOPh-W9zorIsH33_fi24bos9v-3RdLIpnO3j7cQFOne6Snf_kDLzerl6W9-Xm8W69XGxKgyRkZVtDzRxBnGvREuEkFMwxKwyuqZCWCWMc4kTQRriGytaOHUxqyxqOpRaOzMD6yG2D3qn36Pc6fqqgvTo8QtwqHbM3nVXMNYzx1mgsMRWISOeaupWQIOwcQu3Iqo4sE0NK0bpfHoLq4FSNTtXoVBGmKBsH9M_A-HywlqP23X-zL1qafS4 |
| CitedBy_id | crossref_primary_10_1016_j_ins_2025_122572 crossref_primary_10_1007_s40031_021_00696_1 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.14203/jet.v20.36-46 |
| DatabaseName | CrossRef DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2527-9955 |
| EndPage | 46 |
| ExternalDocumentID | oai_doaj_org_article_6fb667dca29248139ffb5d90312ff11d 10_14203_jet_v20_36_46 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ OK1 |
| ID | FETCH-LOGICAL-c1906-d50a6f3177a8d38f9086f6e8c25489e68ccf17384b8fb49de38f235e6b729a8f3 |
| IEDL.DBID | DOA |
| ISSN | 1411-8289 |
| IngestDate | Fri Oct 03 12:53:37 EDT 2025 Tue Nov 18 22:05:30 EST 2025 Sat Nov 29 03:02:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-sa/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1906-d50a6f3177a8d38f9086f6e8c25489e68ccf17384b8fb49de38f235e6b729a8f3 |
| OpenAccessLink | https://doaj.org/article/6fb667dca29248139ffb5d90312ff11d |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6fb667dca29248139ffb5d90312ff11d crossref_primary_10_14203_jet_v20_36_46 crossref_citationtrail_10_14203_jet_v20_36_46 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-31 |
| PublicationDateYYYYMMDD | 2020-12-31 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | Jurnal elektronika dan telekomunikasi |
| PublicationYear | 2020 |
| Publisher | Indonesian Institute of Sciences |
| Publisher_xml | – name: Indonesian Institute of Sciences |
| SSID | ssj0002013877 |
| Score | 2.129576 |
| Snippet | Nowadays, data from various sources are gathered and stored in databases. The collection of the data does not give a significant impact unless the database... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 36 |
| SubjectTerms | data mining privacy preserving data mining sensitive information |
| Title | Classification of Privacy Preserving Data Mining Algorithms: A Review |
| URI | https://doaj.org/article/6fb667dca29248139ffb5d90312ff11d |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2527-9955 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002013877 issn: 1411-8289 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQxQAD4inKSx6QmKzGceLYbAVasVB1AKlb5GdpVVrUlkr8PddOQFkQC2t0E0XHj3uPfH0OQtc5dUnuPCNQrSYkkzohUktOfGY5NdQWPNHRbKIYDMRoJIcNq6_QE1bJA1fAdbjXnBfWqBSYgoB6xXudWwlzMfWeUht236SQDTI1jcdrlIlou0gzSsNdaVkrNmZpwjpTB6s_BcLKSah8GxmpIdwfM0x_H-3VpSHuVr90gLbc_BDtNgQDj1AveliG7p4IKF54PFxONsp84tBLEdb9fIwf1Frhp-j8gLuz8QL4_-vb6hZ3cXUScIxe-r3n-0dSGyEQA_maE5sninvI9IUSlgkvgYd47oQBdiek48IYTwsmMi28zqR1EJOy3HENpbMSnp2g1nwxd6cIw_ucKw97INQOlimRK6MVMzrXmU592kbkG4zS1CrhwaxiVga2EMArAbwSwCsZLzPeRjc_8e-VPsavkXcB25-ooGsdH8Bol_Vol3-N9tl_fOQc7aSBNUe5xgvUWi8_3CXaNpv1ZLW8ihPpC7HNyzM |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Privacy+Preserving+Data+Mining+Algorithms%3A+A+Review&rft.jtitle=Jurnal+elektronika+dan+telekomunikasi&rft.au=Dedi+Gunawan&rft.date=2020-12-31&rft.pub=Indonesian+Institute+of+Sciences&rft.issn=1411-8289&rft.eissn=2527-9955&rft.volume=20&rft.issue=2&rft.spage=36&rft.epage=46&rft_id=info:doi/10.14203%2Fjet.v20.36-46&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6fb667dca29248139ffb5d90312ff11d |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1411-8289&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1411-8289&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1411-8289&client=summon |