Improve QoS for multi-body sensor analytics in smart healthcare system using machine learning algorithm

Embracing significant learning methods for human lead affirmation has shown suitable in taking out discriminants from the coarse information packs obtained from body-mounted sensors. But human headway is ideal coded in a movement of moderate models, the standard AI strategy is to finished certificat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of interdisciplinary mathematics Vol. 26; no. 3; pp. 393 - 405
Main Authors: Saini, Dilip Kumar Jang Bahadur, Pawar, Sonali Kishore, Tondare, Sharda Prakash, Nigade, Anuradha Sagar, Morbale, Jyoti, Gangwar, Mohit
Format: Journal Article
Language:English
Published: 2023
ISSN:0972-0502, 2169-012X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Embracing significant learning methods for human lead affirmation has shown suitable in taking out discriminants from the coarse information packs obtained from body-mounted sensors. But human headway is ideal coded in a movement of moderate models, the standard AI strategy is to finished certification obligations without taking advantage of the normal relationship between analysis information tests. This paper proposes the use of (DRNN) to manufacture a psychological model that can get critical distance conditions with factor-length input position. We present unidirectional, bidirectional, and comfortable models concerning DRNNs with LSTM and finding parameters using sporadic benchmark datasets. Exploratory results show that the proposed model is superior to a standard AI-based system. SVM and Nearest Neighbour Method (KNN). Moreover, In this Paper implementation smart system runs in tendency to other significant learning techniques like Deep Trust Organization (DBN) and CNN. Human Action Acknowledgment (HAR) assignments were consistently made using arranged highlights got by heuristic cycles.
AbstractList Embracing significant learning methods for human lead affirmation has shown suitable in taking out discriminants from the coarse information packs obtained from body-mounted sensors. But human headway is ideal coded in a movement of moderate models, the standard AI strategy is to finished certification obligations without taking advantage of the normal relationship between analysis information tests. This paper proposes the use of (DRNN) to manufacture a psychological model that can get critical distance conditions with factor-length input position. We present unidirectional, bidirectional, and comfortable models concerning DRNNs with LSTM and finding parameters using sporadic benchmark datasets. Exploratory results show that the proposed model is superior to a standard AI-based system. SVM and Nearest Neighbour Method (KNN). Moreover, In this Paper implementation smart system runs in tendency to other significant learning techniques like Deep Trust Organization (DBN) and CNN. Human Action Acknowledgment (HAR) assignments were consistently made using arranged highlights got by heuristic cycles.
Author Tondare, Sharda Prakash
Pawar, Sonali Kishore
Saini, Dilip Kumar Jang Bahadur
Morbale, Jyoti
Nigade, Anuradha Sagar
Gangwar, Mohit
Author_xml – sequence: 1
  givenname: Dilip Kumar Jang Bahadur
  surname: Saini
  fullname: Saini, Dilip Kumar Jang Bahadur
– sequence: 2
  givenname: Sonali Kishore
  surname: Pawar
  fullname: Pawar, Sonali Kishore
– sequence: 3
  givenname: Sharda Prakash
  surname: Tondare
  fullname: Tondare, Sharda Prakash
– sequence: 4
  givenname: Anuradha Sagar
  surname: Nigade
  fullname: Nigade, Anuradha Sagar
– sequence: 5
  givenname: Jyoti
  surname: Morbale
  fullname: Morbale, Jyoti
– sequence: 6
  givenname: Mohit
  surname: Gangwar
  fullname: Gangwar, Mohit
BookMark eNotkE1LAzEYhINUsK0e_Ae5eogm2Y9sjlL8qFRE7MHb8m76bjeym5QkFfbfu1VPAzMwzDwLMnPeISHXgt_mSqv87mX9ykSp-BmZS1FqxoX8nJE510oyXnB5QRYxfnFeSpGpOdmvh0Pw30jf_QdtfaDDsU-WNX430oguTg446MdkTaTW0ThASLRD6FNnICCNY0w40GO0bk8HMJ11SHuE4E4G9HsfbOqGS3LeQh_x6l-XZPv4sF09s83b03p1v2FGVDoxKFDxxmjVmqpoASTXmSq5FqgyucunX9X0AeEUm7Jo2gxkkwlZicaIBrMlufmrNcHHGLCtD8FOk8da8PoXUD0Bqk-Ash91SFxW
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.47974/JIM-1670
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2169-012X
EndPage 405
ExternalDocumentID 10_47974_JIM_1670
GroupedDBID 30N
4.4
AAYXX
ABCCY
ABFIM
ABJNI
ABPEM
ABTAI
ABXYU
ACAGQ
ACFPA
ACGFS
ACTIO
ADCVX
AEYOC
AGDLA
AGROQ
AIJEM
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CITATION
CRFIH
DGEBU
DKSSO
DMQIW
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J9A
KYCEM
LJTGL
M4Z
O9-
P2P
QCRFL
S-T
SNACF
TDBHL
TFW
TTHFI
UT5
ID FETCH-LOGICAL-c189t-a5e70bc97fc85faa209376091e732d46708502eafc85c65bf3a2b31281bc1be3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001051367400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0972-0502
IngestDate Sat Nov 29 02:48:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c189t-a5e70bc97fc85faa209376091e732d46708502eafc85c65bf3a2b31281bc1be3
PageCount 13
ParticipantIDs crossref_primary_10_47974_JIM_1670
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationTitle Journal of interdisciplinary mathematics
PublicationYear 2023
SSID ssj0062137
Score 2.2392304
Snippet Embracing significant learning methods for human lead affirmation has shown suitable in taking out discriminants from the coarse information packs obtained...
SourceID crossref
SourceType Index Database
StartPage 393
Title Improve QoS for multi-body sensor analytics in smart healthcare system using machine learning algorithm
Volume 26
WOSCitedRecordID wos001051367400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 2169-012X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062137
  issn: 0972-0502
  databaseCode: TFW
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbtIf2UPqkb0TpzZjalm1Zx7Q09EFCyhqa2zKyZa_Jrh3s3TT5m_1FHUl-bBoK6aEXs8grmfV8aEaz33xDyLtQoNvkAXNVzEI3ZMDcREpwWZxAlAk_E6wwzSb40VFyciKOZ7NfQy3M-YrXdXJxIc7-q6lxDI2tS2f_wdzjojiAn9HoeEWz4_VGhrdpAuV8b-aGQ2gog65s8kunwzOrIU3C6tLIM1e1061xjb4c0tDArLazszVJhLXhWqqhuUTpwKps2mqzXP8lqtXyE-2VUt_1KAw7hu9z3ZbC7HY6m-MYmrfzFXD5D7CEfDsSho_hpyWAz82BwflWdctmouumjU6D2CS6rh4DLb90Ct2U4q7KXld4v962kC_BmUMJ7W6uwxYiD-lKHrhe5NmdW5mxwI8118u0Yx93c1t_36OW7WzNzHZi7L18aIq9rzmQkOP5SjfH_nLo-rFtaXJVpPsP5zlSGvEwZSYvcOpCT71Fbgc8ErqdSHrwY4gO4qDXcR1-j1W7MlPfD0_diZF2gp30Abnf25PuW3Q9JDNVPyL3DidLPiZljzOKOKOIMzrhjFqc0RFntKqpwRmdcEYtzqjBGe1xRgec0RFnT0h68Cn9-Nntu3a4mZ-IjQuR4p7MBC-yJCoAAk9o4pXwFWdBjn5ZiyQGCvTtLI5kwSCQTP-hKzNfKvaU7NVNrZ4RygvmFzkA-msZityTER6_OQech0G37z8nb4fXtDiz2iyLa2Z4cZMvvSR3Ndxsau0V2du0W_Wa3MnON1XXvjEG_A2w2ope
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improve+QoS+for+multi-body+sensor+analytics+in+smart+healthcare+system+using+machine+learning+algorithm&rft.jtitle=Journal+of+interdisciplinary+mathematics&rft.au=Saini%2C+Dilip+Kumar+Jang+Bahadur&rft.au=Pawar%2C+Sonali+Kishore&rft.au=Tondare%2C+Sharda+Prakash&rft.au=Nigade%2C+Anuradha+Sagar&rft.date=2023&rft.issn=0972-0502&rft.eissn=2169-012X&rft.volume=26&rft.issue=3&rft.spage=393&rft.epage=405&rft_id=info:doi/10.47974%2FJIM-1670&rft.externalDBID=n%2Fa&rft.externalDocID=10_47974_JIM_1670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0972-0502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0972-0502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0972-0502&client=summon