Improve QoS for multi-body sensor analytics in smart healthcare system using machine learning algorithm
Embracing significant learning methods for human lead affirmation has shown suitable in taking out discriminants from the coarse information packs obtained from body-mounted sensors. But human headway is ideal coded in a movement of moderate models, the standard AI strategy is to finished certificat...
Saved in:
| Published in: | Journal of interdisciplinary mathematics Vol. 26; no. 3; pp. 393 - 405 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
2023
|
| ISSN: | 0972-0502, 2169-012X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Embracing significant learning methods for human lead affirmation has shown suitable in taking out discriminants from the coarse information packs obtained from body-mounted sensors. But human headway is ideal coded in a movement of moderate models, the standard AI strategy is to finished certification obligations without taking advantage of the normal relationship between analysis information tests. This paper proposes the use of (DRNN) to manufacture a psychological model that can get critical distance conditions with factor-length input position. We present unidirectional, bidirectional, and comfortable models concerning DRNNs with LSTM and finding parameters using sporadic benchmark datasets. Exploratory results show that the proposed model is superior to a standard AI-based system. SVM and Nearest Neighbour Method (KNN). Moreover, In this Paper implementation smart system runs in tendency to other significant learning techniques like Deep Trust Organization (DBN) and CNN. Human Action Acknowledgment (HAR) assignments were consistently made using arranged highlights got by heuristic cycles. |
|---|---|
| AbstractList | Embracing significant learning methods for human lead affirmation has shown suitable in taking out discriminants from the coarse information packs obtained from body-mounted sensors. But human headway is ideal coded in a movement of moderate models, the standard AI strategy is to finished certification obligations without taking advantage of the normal relationship between analysis information tests. This paper proposes the use of (DRNN) to manufacture a psychological model that can get critical distance conditions with factor-length input position. We present unidirectional, bidirectional, and comfortable models concerning DRNNs with LSTM and finding parameters using sporadic benchmark datasets. Exploratory results show that the proposed model is superior to a standard AI-based system. SVM and Nearest Neighbour Method (KNN). Moreover, In this Paper implementation smart system runs in tendency to other significant learning techniques like Deep Trust Organization (DBN) and CNN. Human Action Acknowledgment (HAR) assignments were consistently made using arranged highlights got by heuristic cycles. |
| Author | Tondare, Sharda Prakash Pawar, Sonali Kishore Saini, Dilip Kumar Jang Bahadur Morbale, Jyoti Nigade, Anuradha Sagar Gangwar, Mohit |
| Author_xml | – sequence: 1 givenname: Dilip Kumar Jang Bahadur surname: Saini fullname: Saini, Dilip Kumar Jang Bahadur – sequence: 2 givenname: Sonali Kishore surname: Pawar fullname: Pawar, Sonali Kishore – sequence: 3 givenname: Sharda Prakash surname: Tondare fullname: Tondare, Sharda Prakash – sequence: 4 givenname: Anuradha Sagar surname: Nigade fullname: Nigade, Anuradha Sagar – sequence: 5 givenname: Jyoti surname: Morbale fullname: Morbale, Jyoti – sequence: 6 givenname: Mohit surname: Gangwar fullname: Gangwar, Mohit |
| BookMark | eNotkE1LAzEYhINUsK0e_Ae5eogm2Y9sjlL8qFRE7MHb8m76bjeym5QkFfbfu1VPAzMwzDwLMnPeISHXgt_mSqv87mX9ykSp-BmZS1FqxoX8nJE510oyXnB5QRYxfnFeSpGpOdmvh0Pw30jf_QdtfaDDsU-WNX430oguTg446MdkTaTW0ThASLRD6FNnICCNY0w40GO0bk8HMJ11SHuE4E4G9HsfbOqGS3LeQh_x6l-XZPv4sF09s83b03p1v2FGVDoxKFDxxmjVmqpoASTXmSq5FqgyucunX9X0AeEUm7Jo2gxkkwlZicaIBrMlufmrNcHHGLCtD8FOk8da8PoXUD0Bqk-Ash91SFxW |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.47974/JIM-1670 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2169-012X |
| EndPage | 405 |
| ExternalDocumentID | 10_47974_JIM_1670 |
| GroupedDBID | 30N 4.4 AAYXX ABCCY ABFIM ABJNI ABPEM ABTAI ABXYU ACAGQ ACFPA ACGFS ACTIO ADCVX AEYOC AGDLA AGROQ AIJEM AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CITATION CRFIH DGEBU DKSSO DMQIW EBS EJD E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J9A KYCEM LJTGL M4Z O9- P2P QCRFL S-T SNACF TDBHL TFW TTHFI UT5 |
| ID | FETCH-LOGICAL-c189t-a5e70bc97fc85faa209376091e732d46708502eafc85c65bf3a2b31281bc1be3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001051367400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0972-0502 |
| IngestDate | Sat Nov 29 02:48:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c189t-a5e70bc97fc85faa209376091e732d46708502eafc85c65bf3a2b31281bc1be3 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_47974_JIM_1670 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-00-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of interdisciplinary mathematics |
| PublicationYear | 2023 |
| SSID | ssj0062137 |
| Score | 2.2392304 |
| Snippet | Embracing significant learning methods for human lead affirmation has shown suitable in taking out discriminants from the coarse information packs obtained... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 393 |
| Title | Improve QoS for multi-body sensor analytics in smart healthcare system using machine learning algorithm |
| Volume | 26 |
| WOSCitedRecordID | wos001051367400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 2169-012X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062137 issn: 0972-0502 databaseCode: TFW dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbtIf2UPqkb0TpzZjalm1Zx7Q09EFCyhqa2zKyZa_Jrh3s3TT5m_1FHUl-bBoK6aEXs8grmfV8aEaz33xDyLtQoNvkAXNVzEI3ZMDcREpwWZxAlAk_E6wwzSb40VFyciKOZ7NfQy3M-YrXdXJxIc7-q6lxDI2tS2f_wdzjojiAn9HoeEWz4_VGhrdpAuV8b-aGQ2gog65s8kunwzOrIU3C6tLIM1e1061xjb4c0tDArLazszVJhLXhWqqhuUTpwKps2mqzXP8lqtXyE-2VUt_1KAw7hu9z3ZbC7HY6m-MYmrfzFXD5D7CEfDsSho_hpyWAz82BwflWdctmouumjU6D2CS6rh4DLb90Ct2U4q7KXld4v962kC_BmUMJ7W6uwxYiD-lKHrhe5NmdW5mxwI8118u0Yx93c1t_36OW7WzNzHZi7L18aIq9rzmQkOP5SjfH_nLo-rFtaXJVpPsP5zlSGvEwZSYvcOpCT71Fbgc8ErqdSHrwY4gO4qDXcR1-j1W7MlPfD0_diZF2gp30Abnf25PuW3Q9JDNVPyL3DidLPiZljzOKOKOIMzrhjFqc0RFntKqpwRmdcEYtzqjBGe1xRgec0RFnT0h68Cn9-Nntu3a4mZ-IjQuR4p7MBC-yJCoAAk9o4pXwFWdBjn5ZiyQGCvTtLI5kwSCQTP-hKzNfKvaU7NVNrZ4RygvmFzkA-msZityTER6_OQech0G37z8nb4fXtDiz2iyLa2Z4cZMvvSR3Ndxsau0V2du0W_Wa3MnON1XXvjEG_A2w2ope |
| linkProvider | Taylor & Francis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improve+QoS+for+multi-body+sensor+analytics+in+smart+healthcare+system+using+machine+learning+algorithm&rft.jtitle=Journal+of+interdisciplinary+mathematics&rft.au=Saini%2C+Dilip+Kumar+Jang+Bahadur&rft.au=Pawar%2C+Sonali+Kishore&rft.au=Tondare%2C+Sharda+Prakash&rft.au=Nigade%2C+Anuradha+Sagar&rft.date=2023&rft.issn=0972-0502&rft.eissn=2169-012X&rft.volume=26&rft.issue=3&rft.spage=393&rft.epage=405&rft_id=info:doi/10.47974%2FJIM-1670&rft.externalDBID=n%2Fa&rft.externalDocID=10_47974_JIM_1670 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0972-0502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0972-0502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0972-0502&client=summon |