A Fully Data-Driven Approach for Realistic Traffic Signal Control Using Offline Reinforcement Learning

The optimization of traffic signal control (TSC) is critical for an efficient transportation system. In recent years, reinforcement learning (RL) techniques have emerged as a popular approach for TSC and show promising results for highly adaptive control. However, existing RL-based methods suffer fr...

Full description

Saved in:
Bibliographic Details
Published in:Data science for Transportation Vol. 7; no. 3; p. 25
Main Authors: Li, Jianxiong, Lin, Shichao, Shi, Tianyu, Tian, Chujie, Mei, Yu, Song, Jian, Zhan, Xianyuan, Li, Ruimin
Format: Journal Article
Language:English
Published: Singapore Springer Nature Singapore 01.12.2025
Springer Nature B.V
Subjects:
ISSN:2948-135X, 2948-1368
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The optimization of traffic signal control (TSC) is critical for an efficient transportation system. In recent years, reinforcement learning (RL) techniques have emerged as a popular approach for TSC and show promising results for highly adaptive control. However, existing RL-based methods suffer from serious real-world transferability issues and hardly have any successful deployments. The reasons for such failures are mostly due to the reliance on over-idealized traffic simulators for policy optimization, as well as using unrealistic fine-grained state observations and reward signals that are not directly obtainable from real-world sensors. In this paper, we propose a fully data-driven and simulator-free framework for realistic Traffic Signal Control. Specifically, we combine well-established traffic flow theory with machine learning to construct a reward inference model to infer the reward signals from coarse-grained traffic data. With the inferred rewards, we further propose a sample-efficient offline RL method to enable direct signal control policy learning from historical offline data sets of real-world intersections. To evaluate our approach, we collect historical traffic data from a real-world intersection, and develop a highly customized simulation environment that strictly follows real data characteristics. We demonstrate through extensive experiments that our approach achieves superior performance over conventional and offline RL baselines, and also enjoys much better real-world applicability.
AbstractList The optimization of traffic signal control (TSC) is critical for an efficient transportation system. In recent years, reinforcement learning (RL) techniques have emerged as a popular approach for TSC and show promising results for highly adaptive control. However, existing RL-based methods suffer from serious real-world transferability issues and hardly have any successful deployments. The reasons for such failures are mostly due to the reliance on over-idealized traffic simulators for policy optimization, as well as using unrealistic fine-grained state observations and reward signals that are not directly obtainable from real-world sensors. In this paper, we propose a fully data-driven and simulator-free framework for realistic Traffic Signal Control. Specifically, we combine well-established traffic flow theory with machine learning to construct a reward inference model to infer the reward signals from coarse-grained traffic data. With the inferred rewards, we further propose a sample-efficient offline RL method to enable direct signal control policy learning from historical offline data sets of real-world intersections. To evaluate our approach, we collect historical traffic data from a real-world intersection, and develop a highly customized simulation environment that strictly follows real data characteristics. We demonstrate through extensive experiments that our approach achieves superior performance over conventional and offline RL baselines, and also enjoys much better real-world applicability.
ArticleNumber 25
Author Zhan, Xianyuan
Shi, Tianyu
Mei, Yu
Li, Ruimin
Lin, Shichao
Li, Jianxiong
Tian, Chujie
Song, Jian
Author_xml – sequence: 1
  givenname: Jianxiong
  surname: Li
  fullname: Li, Jianxiong
  organization: Tsinghua University
– sequence: 2
  givenname: Shichao
  surname: Lin
  fullname: Lin, Shichao
  organization: Tsinghua University
– sequence: 3
  givenname: Tianyu
  surname: Shi
  fullname: Shi, Tianyu
  organization: University of Toronto
– sequence: 4
  givenname: Chujie
  surname: Tian
  fullname: Tian, Chujie
  organization: Baidu Inc
– sequence: 5
  givenname: Yu
  surname: Mei
  fullname: Mei, Yu
  organization: Baidu Inc
– sequence: 6
  givenname: Jian
  surname: Song
  fullname: Song, Jian
  organization: Baidu Inc
– sequence: 7
  givenname: Xianyuan
  surname: Zhan
  fullname: Zhan, Xianyuan
  email: zhanxianyuan@air.tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 8
  givenname: Ruimin
  surname: Li
  fullname: Li, Ruimin
  email: lrmin@tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNp9UE1LAzEUDFLBWvsHPAU8R_PV3eyxtFaFQkFb8BayaVJT0mxNtkL7642u6M3TPN6bGd7MJeiFJhgArgm-JRiXd4lTTgnCdIQwJqxCpzPQpxUXiLBC9H7n0esFGKa0xRjTCpO87QM7hrOD90c4Va1C0-g-TIDj_T42Sr9B20T4bJR3qXUaLqOyNuOL2wTl4aQJbWw8XCUXNnBhrXfBZLoLWabNzoQWzo2KIZ-vwLlVPpnhDw7Aana_nDyi-eLhaTKeI01EeUJUqJLjmjGluRpVFAuLTW3qtWBrzK0WnK9LYrlRtGCmUlxYSktLtaWirouaDcBN55sDvB9MauW2OcT8bZKMFoLl4LTKLNqxdGxSisbKfXQ7FY-SYPlVqewqlblS-V2pPGUR60Qpk8PGxD_rf1SfzgZ8Fg
Cites_doi 10.1145/3447556.3447565
10.1145/3357384.3358079
10.1007/978-1-4471-5113-5_3
10.1016/0191-2615(93)90039-D
10.1016/j.trb.2015.02.015
10.1016/j.trc.2019.08.014
10.1109/ITSC.2018.8569938
10.1016/j.trc.2020.102660
10.1098/rspa.1955.0089
10.1016/j.trc.2022.103728
10.1109/JAS.2016.7508798
10.1108/9780585475301
10.1007/s42421-023-00074-x
10.1109/TITS.2021.3070835
10.1007/s42421-024-00103-3
10.1145/3357384.3357900
10.1609/aaai.v34i04.5744
10.1145/3308558.3314139
10.1609/aaai.v39i20.35403
10.1016/j.trc.2009.04.005
10.1609/aaai.v36i4.20393
10.1016/0191-2615(91)90013-9
10.1109/ITSC.2019.8917451
10.1145/3219819.3220096
10.1007/s42421-020-00021-0
10.1145/3357384.3357902
10.1109/TITS.2021.3054625
10.1109/T-VT.1980.23833
10.1609/aaai.v34i01.5467
10.1109/TITS.2023.3263847
10.1109/TITS.2019.2901791
10.1016/j.trc.2021.103321
10.1109/TVT.2018.2890726
10.1287/opre.4.1.42
10.1061/(ASCE)0733-947X(2003)129:3(278)
10.1007/s42421-020-00029-6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s42421-025-00139-z
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2948-1368
ExternalDocumentID 10_1007_s42421_025_00139_z
GrantInformation_xml – fundername: National Key Research and Development Program of China under Grant
  grantid: 2022YFB2502904
– fundername: Baidu
  funderid: https://doi.org/10.13039/100018903
GroupedDBID 0R~
406
AACDK
AAJBT
AASML
AATNV
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABRTQ
ACAOD
ACPIV
ACSTC
ACZOJ
AEFQL
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AGQEE
AHWEU
AIGIU
AIXLP
ALMA_UNASSIGNED_HOLDINGS
AMXSW
ATHPR
DPUIP
EBLON
EBS
FIGPU
JZLTJ
NPVJJ
PT4
ROL
RSV
SJYHP
SNE
SOJ
AAUYE
AAYXX
ABJCF
AEUYN
AFFHD
AFKRA
ARAPS
BENPR
BGLVJ
BGNMA
CCPQU
CITATION
HCIFZ
K7-
M4Y
M7S
NU0
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c187z-28a740b33ac4a59208f0ebebd83d04fc844d71f4ea263e9a48f227f2cf28bb6b3
IEDL.DBID RSV
ISSN 2948-135X
IngestDate Wed Nov 05 10:19:52 EST 2025
Sat Nov 29 07:01:42 EST 2025
Tue Nov 04 01:14:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Real-world traffic data
Shockwave theory
Offline reinforcement learning
Traffic signal control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c187z-28a740b33ac4a59208f0ebebd83d04fc844d71f4ea263e9a48f227f2cf28bb6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3268302929
PQPubID 7434373
ParticipantIDs proquest_journals_3268302929
crossref_primary_10_1007_s42421_025_00139_z
springer_journals_10_1007_s42421_025_00139_z
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: London
PublicationTitle Data science for Transportation
PublicationTitleAbbrev Data Sci. Transp
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References CM Bishop (139_CR5) 2006
139_CR44
139_CR42
139_CR40
JO Berger (139_CR4) 2013
PI Richards (139_CR46) 1956; 4
139_CR47
139_CR48
139_CR45
H Xu (139_CR59) 2022; 35
A Kumar (139_CR26) 2020; 33
L Li (139_CR29) 2016; 3
AG Sims (139_CR49) 1980; 29
BR Kiran (139_CR24) 2021; 23
Z Mo (139_CR39) 2022; 141
139_CR54
139_CR11
139_CR55
C Cai (139_CR6) 2009; 17
139_CR53
139_CR50
139_CR9
139_CR51
139_CR7
MJ Lighthill (139_CR31) 1955; 229
139_CR18
139_CR19
139_CR16
S Fujimoto (139_CR12) 2021; 34
139_CR14
139_CR58
X Zhan (139_CR64) 2020; 117
139_CR15
139_CR56
139_CR13
139_CR57
A Oroojlooy (139_CR43) 2020; 33
139_CR21
139_CR65
139_CR22
139_CR66
139_CR63
139_CR20
NH Gartner (139_CR17) 1991; 25
139_CR60
139_CR27
139_CR28
H Wei (139_CR52) 2021; 22
139_CR25
H Yan (139_CR61) 2019; 107
139_CR69
139_CR67
139_CR68
T Chu (139_CR8) 2019; 21
139_CR3
139_CR32
139_CR76
139_CR33
139_CR74
139_CR75
B Abdulhai (139_CR1) 2003; 129
139_CR72
139_CR73
139_CR70
139_CR71
J Yoon (139_CR62) 2021; 130
139_CR38
139_CR36
139_CR37
139_CR34
139_CR35
GF Newell (139_CR41) 1993; 27
CF Daganzo (139_CR10) 1997
W-L Jin (139_CR23) 2015; 77
G An (139_CR2) 2021; 34
X Liang (139_CR30) 2019; 68
References_xml – ident: 139_CR60
– ident: 139_CR58
– volume: 22
  start-page: 12
  issue: 2
  year: 2021
  ident: 139_CR52
  publication-title: ACM SIGKDD Explor Newsl
  doi: 10.1145/3447556.3447565
– ident: 139_CR16
– ident: 139_CR57
  doi: 10.1145/3357384.3358079
– ident: 139_CR9
  doi: 10.1007/978-1-4471-5113-5_3
– volume: 27
  start-page: 289
  issue: 4
  year: 1993
  ident: 139_CR41
  publication-title: Transp Res B Methodol
  doi: 10.1016/0191-2615(93)90039-D
– volume: 34
  start-page: 7436
  year: 2021
  ident: 139_CR2
  publication-title: Adv Neural Inf Process Syst
– ident: 139_CR21
– ident: 139_CR44
– volume: 77
  start-page: 1
  year: 2015
  ident: 139_CR23
  publication-title: Transp Res B Methodol
  doi: 10.1016/j.trb.2015.02.015
– ident: 139_CR25
– ident: 139_CR50
– ident: 139_CR48
– volume: 107
  start-page: 266
  year: 2019
  ident: 139_CR61
  publication-title: Transp Res C Emerg Technol
  doi: 10.1016/j.trc.2019.08.014
– ident: 139_CR35
  doi: 10.1109/ITSC.2018.8569938
– ident: 139_CR40
– volume: 117
  year: 2020
  ident: 139_CR64
  publication-title: Transp Res C Emerg Technol
  doi: 10.1016/j.trc.2020.102660
– volume: 229
  start-page: 317
  issue: 1178
  year: 1955
  ident: 139_CR31
  publication-title: Proc R Soc Lond A
  doi: 10.1098/rspa.1955.0089
– volume: 141
  year: 2022
  ident: 139_CR39
  publication-title: Transp Res C Emerg Technol
  doi: 10.1016/j.trc.2022.103728
– ident: 139_CR3
– ident: 139_CR34
– volume: 3
  start-page: 247
  issue: 3
  year: 2016
  ident: 139_CR29
  publication-title: IEEE/CAA J Autom Sin
  doi: 10.1109/JAS.2016.7508798
– ident: 139_CR13
– volume-title: Fundamentals of transportation and traffic operations
  year: 1997
  ident: 139_CR10
  doi: 10.1108/9780585475301
– ident: 139_CR71
  doi: 10.1007/s42421-023-00074-x
– ident: 139_CR55
– ident: 139_CR38
– ident: 139_CR11
  doi: 10.1109/TITS.2021.3070835
– ident: 139_CR70
  doi: 10.1007/s42421-024-00103-3
– ident: 139_CR67
  doi: 10.1145/3357384.3357900
– ident: 139_CR7
  doi: 10.1609/aaai.v34i04.5744
– volume: 34
  start-page: 20132
  year: 2021
  ident: 139_CR12
  publication-title: Adv Neural Inf Process Syst
– volume: 35
  start-page: 4085
  year: 2022
  ident: 139_CR59
  publication-title: Adv Neural Inf Process Syst
– ident: 139_CR65
  doi: 10.1145/3308558.3314139
– ident: 139_CR51
– ident: 139_CR45
– ident: 139_CR74
  doi: 10.1609/aaai.v39i20.35403
– volume: 17
  start-page: 456
  issue: 5
  year: 2009
  ident: 139_CR6
  publication-title: Transp Res C Emerg Technol
  doi: 10.1016/j.trc.2009.04.005
– ident: 139_CR28
– ident: 139_CR76
– volume-title: Statistical decision theory and Bayesian analysis
  year: 2013
  ident: 139_CR4
– ident: 139_CR20
– volume: 33
  start-page: 1179
  year: 2020
  ident: 139_CR26
  publication-title: Adv Neural Inf Process Syst
– ident: 139_CR69
  doi: 10.1609/aaai.v36i4.20393
– volume: 25
  start-page: 55
  issue: 1
  year: 1991
  ident: 139_CR17
  publication-title: Transp Res B Methodol
  doi: 10.1016/0191-2615(91)90013-9
– ident: 139_CR47
  doi: 10.1109/ITSC.2019.8917451
– ident: 139_CR53
  doi: 10.1145/3219819.3220096
– ident: 139_CR56
– ident: 139_CR33
– ident: 139_CR66
– ident: 139_CR14
– ident: 139_CR73
  doi: 10.1007/s42421-020-00021-0
– ident: 139_CR54
  doi: 10.1145/3357384.3357902
– volume: 23
  start-page: 4909
  issue: 6
  year: 2021
  ident: 139_CR24
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3054625
– volume: 29
  start-page: 130
  issue: 2
  year: 1980
  ident: 139_CR49
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/T-VT.1980.23833
– ident: 139_CR75
– ident: 139_CR18
– ident: 139_CR27
– ident: 139_CR42
– ident: 139_CR32
– ident: 139_CR36
– ident: 139_CR63
  doi: 10.1609/aaai.v34i01.5467
– ident: 139_CR37
  doi: 10.1109/TITS.2023.3263847
– volume-title: Pattern recognition and machine learning
  year: 2006
  ident: 139_CR5
– volume: 21
  start-page: 1086
  issue: 3
  year: 2019
  ident: 139_CR8
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2901791
– ident: 139_CR15
– volume: 130
  year: 2021
  ident: 139_CR62
  publication-title: Transp Res C Emerg Technol
  doi: 10.1016/j.trc.2021.103321
– ident: 139_CR22
– volume: 68
  start-page: 1243
  issue: 2
  year: 2019
  ident: 139_CR30
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2018.2890726
– ident: 139_CR19
– ident: 139_CR68
– volume: 4
  start-page: 42
  issue: 1
  year: 1956
  ident: 139_CR46
  publication-title: Oper Res
  doi: 10.1287/opre.4.1.42
– volume: 129
  start-page: 278
  issue: 3
  year: 2003
  ident: 139_CR1
  publication-title: J Transp Eng
  doi: 10.1061/(ASCE)0733-947X(2003)129:3(278)
– volume: 33
  start-page: 4079
  year: 2020
  ident: 139_CR43
  publication-title: Adv Neural Inf Process Syst
– ident: 139_CR72
  doi: 10.1007/s42421-020-00029-6
SSID ssj0002901294
Score 2.3106189
Snippet The optimization of traffic signal control (TSC) is critical for an efficient transportation system. In recent years, reinforcement learning (RL) techniques...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 25
SubjectTerms Adaptive control
Computational Intelligence
Data Mining and Knowledge Discovery
Datasets
Engineering
Flow theory
Machine learning
Neural networks
Optimization
Regularization methods
Simulation
Simulators
Traffic control
Traffic flow
Traffic information
Traffic intersections
Traffic signals
Transportation systems
Transportation Technology and Traffic Engineering
Title A Fully Data-Driven Approach for Realistic Traffic Signal Control Using Offline Reinforcement Learning
URI https://link.springer.com/article/10.1007/s42421-025-00139-z
https://www.proquest.com/docview/3268302929
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2948-1368
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002901294
  issn: 2948-135X
  databaseCode: RSV
  dateStart: 20190601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYYCBb0ShIA9sYClx3MQZq5aKqaAWULfIdnxVl4LagkR_PbaTtIBggCVLrJN1Z_uefXfvAC5FqpGjyKnMjaZchoYqrhXl1r1wg84jFM0mkl5PDIfpfVkUNquy3auQpD-pl8Vu3EUvqWu_6nELXazDhnV3wm3H_uBp-bLiIoPMd0C0X3tFiprDslrmZzFfPdIKZn6LjHqH093931T3YKcEmKRVrIh9WDOTA9j-RDt4CNgi7ub5TjpyLmln6g480irJxYlFsaRvHC-ilUCsL3MkE2QwHjmx7SKznfhMA3KH6FCqHe75V7V_aiQlZevoCB67Nw_tW1r2W6A6FMmCMiETHqgokprLZsoCgYG1scpFlAccteA8T0LkRrI4MqnkAhlLkGlkQqlYRcdQmzxPzAmQEFOBSsZ5HKMFbHkqYskUykgGGAnUdbiqdJ69FLQa2ZJA2Wsvs9rLvPayRR0alVmycovNMos7HXeZhXd1uK7MsPr9u7TTvw0_gy3mLOlTWBpQm09fzTls6rf5eDa98EvvA6Jh1VU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIAEH3ojBgBy4QaQuzdr0OG0gEGMgBmi3KknjaZeBtoHEfj1J1o6H4ACXXBJZlZ3GX2L7M8CxSDRyFBmVmdGUy6qhimtFuXUv3KDzCNNmE3G7Lbrd5DYvChsV2e5FSNKf1LNiN-6il9S1X_W4hU7mYcGJdIl8d53H2cuKiwwy3wHRjvaKFNa6ebXMz2K-eqQPmPktMuodzvna_z51HVZzgEnq0x2xAXNmsAkrn2gHtwDrxN0830hTjiVtDt2BR-o5uTixKJbcGceLaCUQ68scyQTp9HtObGOa2U58pgG5QXQo1S73_KvaPzWSnLK1tw0P52f3jQua91uguiriCWVCxjxQYSg1l7WEBQIDa2OViTALOGrBeRZXkRvJotAkkgtkLEamkQmlIhXuQGnwNDC7QKqYCFQyyqIILWDLEhFJplCGMsBQoC7DSaHz9HlKq5HOCJS99lKrvdRrL52UoVKYJc1_sVFqcafjLrPwrgynhRk-pn-Xtve35UewdHF_3Upbl-2rfVhmzqo-naUCpfHwxRzAon4d90fDQ78N3wGr6tg5
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8MwDLVgIAQHvhGDATlwg4guzdr0OG1MINBADNBuVZLGiMuYtoHEfj1J2m2A4IC49NLIquykfo7tZ4BjkWjkKDIqM6Mpl1VDFdeKcuteuEHnEfJhE3G7Lbrd5PZTF7-vdp-kJPOeBsfS1Bud9TM8mza-cZfJpG4Uq8cwdDwPC9wNDXLxeudxesvisoTMT0O0TxsuhbVu0Tnzs5iv3mkGOb9lSb3zaa39_7PXYbUAnqSe75QNmDO9TVj5REe4BVgnLiJ9J005krQ5cD9CUi9Ix4lFt-TOOL5EK4FYH-fIJ0jn-cmJbeQV78RXIJAbRIde7XLPy6r9FSQpqFyftuGhdX7fuKDFHAaqqyIeUyZkzAMVhlJzWUtYIDCwtleZCLOAoxacZ3EVuZEsCk0iuUDGYmQamVAqUuEOlHovPbMLpIqJQCWjLIrQArksEZFkCmUoAwwF6jKcTPSf9nO6jXRKrOy1l1rtpV576bgMlYmJ0uLoDVOLRx2nmYV9ZTidmGT2-ndpe39bfgRLt81Wen3ZvtqHZeaM6qtcKlAaDV7NASzqt9HzcHDod-QHBIDhHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fully+Data-Driven+Approach+for+Realistic+Traffic+Signal+Control+Using+Offline+Reinforcement+Learning&rft.jtitle=Data+science+for+Transportation&rft.au=Li%2C+Jianxiong&rft.au=Lin%2C+Shichao&rft.au=Shi%2C+Tianyu&rft.au=Tian%2C+Chujie&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2948-135X&rft.eissn=2948-1368&rft.volume=7&rft.issue=3&rft.spage=25&rft_id=info:doi/10.1007%2Fs42421-025-00139-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2948-135X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2948-135X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2948-135X&client=summon