An experimental approach to design deterministic and adaptive control schemes for grouping genetic algorithms
Genetic algorithms can solve many complex problems, including designing and optimizing machine learning techniques like neural networks, as well as challenges in production management and engineering. Paradoxically, the design of these methods, which aim to solve optimization problems efficiently, d...
Saved in:
| Published in: | Neural computing & applications Vol. 37; no. 33; pp. 27811 - 27840 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.11.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Genetic algorithms can solve many complex problems, including designing and optimizing machine learning techniques like neural networks, as well as challenges in production management and engineering. Paradoxically, the design of these methods, which aim to solve optimization problems efficiently, depends, in turn, on their components’ design and optimal configuration. Grouping genetic algorithms (GGAs) have excelled in performance and adaptability as one of the best metaheuristics for solving combinatorial optimization problems that require finding optimal partitions of sets of items; however, their performance relies heavily on the proper configuration of parameters like population size, crossover rate, and mutation rate. This paper presents an experimental approach for automated parameter control of GGAs, looking for a dynamic adjustment, enhancing the algorithm’s ability to explore the solution space efficiently, avoid premature convergence, and improve overall solution quality. A comprehensive set of deterministic and adaptive control schemes is introduced for on-line parameter setting in GGAs. The approach is tested by studying three state-of-the-art algorithms for solving complex instances of three NP-hard optimization problems: the Grouping Genetic Algorithm with Controlled Gene Transmission for the One-Dimensional Bin Packing Problem, the Grouping Genetic Algorithm with Intelligent Heuristic Strategies for the Parallel-Machine Scheduling Problem with Unrelated Machines and Makespan Minimization, and the Grouping Genetic Algorithm for Variable Decomposition in Large-Scale Constrained Optimization Problems. The experimental results showed that the proposed approach allows for identifying parameter control schemes that save the extensive task of off-line parameter fine-tuning, obtaining a robust and competitive performance on different benchmark sets, and outperforming the published results for some classes of instances. |
|---|---|
| AbstractList | Genetic algorithms can solve many complex problems, including designing and optimizing machine learning techniques like neural networks, as well as challenges in production management and engineering. Paradoxically, the design of these methods, which aim to solve optimization problems efficiently, depends, in turn, on their components’ design and optimal configuration. Grouping genetic algorithms (GGAs) have excelled in performance and adaptability as one of the best metaheuristics for solving combinatorial optimization problems that require finding optimal partitions of sets of items; however, their performance relies heavily on the proper configuration of parameters like population size, crossover rate, and mutation rate. This paper presents an experimental approach for automated parameter control of GGAs, looking for a dynamic adjustment, enhancing the algorithm’s ability to explore the solution space efficiently, avoid premature convergence, and improve overall solution quality. A comprehensive set of deterministic and adaptive control schemes is introduced for on-line parameter setting in GGAs. The approach is tested by studying three state-of-the-art algorithms for solving complex instances of three NP-hard optimization problems: the Grouping Genetic Algorithm with Controlled Gene Transmission for the One-Dimensional Bin Packing Problem, the Grouping Genetic Algorithm with Intelligent Heuristic Strategies for the Parallel-Machine Scheduling Problem with Unrelated Machines and Makespan Minimization, and the Grouping Genetic Algorithm for Variable Decomposition in Large-Scale Constrained Optimization Problems. The experimental results showed that the proposed approach allows for identifying parameter control schemes that save the extensive task of off-line parameter fine-tuning, obtaining a robust and competitive performance on different benchmark sets, and outperforming the published results for some classes of instances. |
| Author | Amador-Larrea, Stephanie Ramos-Figueroa, Octavio Flores-Torres, Leonardo Quiroz-Castellanos, Marcela |
| Author_xml | – sequence: 1 givenname: Leonardo orcidid: 0009-0005-0324-7708 surname: Flores-Torres fullname: Flores-Torres, Leonardo email: leonardoflotor@outlook.com, leonardoflotor@gmail.com organization: Artificial Intelligence Research Institute, Universidad Veracruzana – sequence: 2 givenname: Marcela orcidid: 0000-0001-8078-9491 surname: Quiroz-Castellanos fullname: Quiroz-Castellanos, Marcela email: maquiroz@uv.mx organization: Artificial Intelligence Research Institute, Universidad Veracruzana – sequence: 3 givenname: Octavio orcidid: 0000-0002-1170-2951 surname: Ramos-Figueroa fullname: Ramos-Figueroa, Octavio organization: Artificial Intelligence Research Institute, Universidad Veracruzana – sequence: 4 givenname: Stephanie surname: Amador-Larrea fullname: Amador-Larrea, Stephanie organization: Artificial Intelligence Research Institute, Universidad Veracruzana |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2CyxByw48RxxqriS6rEArPl2Oc0VWIHO0Xh32MoEhvTDfc-7-meFVo47wCha0puKSHVXSSkzGlG8jKjNK9INp-hJS0YyxgpxQItSV2kNS_YBVrFeCCEFFyUSzRsHIZ5hNAN4CbVYzWOwSu9x5PHBmLXujQmCEPnujh1GitnsDJqnLoPwNq7KfgeR72HASK2PuA2-OPYuRa34OCH6Fsfumk_xEt0blUf4ep3rtHbw_3r9inbvTw-bze7TFNRzZlQthElsEaYutJCsKrkSjTCgjFVY8AK3ihLc6sNNzm1RVMrUeTc0IIq4IKt0c2pN_3yfoQ4yYM_BpdOSpbzqipEzcqUyk8pHXyMAawckwYVPiUl8lurPGmVSav80SrnBLETFFPYtRD-qv-hvgBaUIBp |
| Cites_doi | 10.1016/j.engappai.2023.106246 10.1016/j.eswa.2012.02.149 10.13053/cys-26-2-4249 10.1109/LCNSymposium50271.2020.9363254 10.1016/S0969-6016(97)00025-7 10.1145/2480741.2480752 10.1016/S0305-0548(96)00082-2 10.1016/j.cor.2014.10.010 10.1109/ROPEC.2016.7830614 10.1007/978-3-030-43680-3_12 10.1162/evco.1994.2.2.123 10.1016/j.swevo.2020.100796 10.1109/TAC.2020.2972824 10.1109/ROPEC.2015.7395159 10.1109/4235.585893 10.1007/978-3-031-08266-5_17 10.1007/BF01539705 10.1016/j.jmsy.2017.04.017 10.1016/j.ejor.2021.04.032 10.1109/DT.2017.8024288 10.1007/978-3-030-68776-2_10 10.1016/j.swevo.2024.101490 10.1007/BF00226291 10.3390/su12062177 10.1007/978-3-540-69432-8 10.1016/j.ejor.2010.03.030 10.1016/j.ins.2014.10.035 10.1109/ROBOT.1992.220088 10.1016/j.swevo.2019.100643 10.1109/4235.771166 10.1016/j.cor.2010.07.006 10.1109/TEVC.2014.2308294 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-025-11270-x |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 27840 |
| ExternalDocumentID | 10_1007_s00521_025_11270_x |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PQGLB PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX CITATION |
| ID | FETCH-LOGICAL-c187x-8afb85e3b8d97c883756a8b8fedd7bdef86baf12fcd6d21f4b9a8426d141ae683 |
| IEDL.DBID | RSV |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 08:48:13 EST 2025 Sat Nov 29 06:57:03 EST 2025 Mon Nov 03 01:30:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 33 |
| Keywords | Grouping genetic algorithm Parameter setting Parameter control Adaptive control Deterministic control |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c187x-8afb85e3b8d97c883756a8b8fedd7bdef86baf12fcd6d21f4b9a8426d141ae683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8078-9491 0009-0005-0324-7708 0000-0002-1170-2951 |
| PQID | 3267748935 |
| PQPubID | 2043988 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_3267748935 crossref_primary_10_1007_s00521_025_11270_x springer_journals_10_1007_s00521_025_11270_x |
| PublicationCentury | 2000 |
| PublicationDate | 20251100 2025-11-00 20251101 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 20251100 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | 11270_CR7 11270_CR4 E Sayed (11270_CR41) 2015; 316 E Falkenauer (11270_CR32) 1994; 2 O Ramos-Figueroa (11270_CR30) 2024; 86 LE Agustín-Blas (11270_CR20) 2012; 39 11270_CR29 O Ramos-Figueroa (11270_CR2) 2023; 28 11270_CR23 P Schwerin (11270_CR35) 1997; 4 G Carmona-Arroyo (11270_CR3) 2022; 27 11270_CR42 11270_CR21 11270_CR44 N Jawahar (11270_CR22) 2017; 44 11270_CR40 M Karimi-Mamaghan (11270_CR26) 2022; 296 O Ramos-Figueroa (11270_CR6) 2021; 60 L Fanjul-Peyro (11270_CR39) 2010; 207 M Črepinšek (11270_CR9) 2013; 45 S Martello (11270_CR31) 1990 J-H Huh (11270_CR24) 2020; 12 A Scholl (11270_CR34) 1997; 24 E Falkenauer (11270_CR33) 1996; 2 C Ruther (11270_CR25) 2021; 66 O Ramos-Figueroa (11270_CR5) 2020; 53 G Karafotias (11270_CR11) 2014; 19 M Quiroz-Castellanos (11270_CR1) 2015; 55 11270_CR16 G Wäscher (11270_CR36) 1996; 18 11270_CR38 11270_CR17 11270_CR18 DH Wolpert (11270_CR27) 1997; 1 11270_CR12 11270_CR13 AE Eiben (11270_CR8) 1999; 3 11270_CR14 11270_CR15 G Srivastava (11270_CR19) 2023; 123 LE Agustín-Blas (11270_CR28) 2011; 38 11270_CR37 11270_CR10 X Li (11270_CR43) 2013; 7 |
| References_xml | – volume: 123 year: 2023 ident: 11270_CR19 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.106246 – volume: 39 start-page: 9695 issue: 10 year: 2012 ident: 11270_CR20 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.02.149 – volume: 28 start-page: 6 issue: 1 year: 2023 ident: 11270_CR2 publication-title: Math Comput Appl – ident: 11270_CR13 doi: 10.13053/cys-26-2-4249 – ident: 11270_CR37 – ident: 11270_CR10 – ident: 11270_CR18 doi: 10.1109/LCNSymposium50271.2020.9363254 – volume: 4 start-page: 377 issue: 5–6 year: 1997 ident: 11270_CR35 publication-title: Int Trans Oper Res doi: 10.1016/S0969-6016(97)00025-7 – volume: 45 start-page: 1 issue: 3 year: 2013 ident: 11270_CR9 publication-title: ACM Comput Surv doi: 10.1145/2480741.2480752 – volume: 24 start-page: 627 issue: 7 year: 1997 ident: 11270_CR34 publication-title: Comput Oper Res doi: 10.1016/S0305-0548(96)00082-2 – volume: 55 start-page: 52 year: 2015 ident: 11270_CR1 publication-title: Comput Oper Res doi: 10.1016/j.cor.2014.10.010 – ident: 11270_CR44 doi: 10.1109/ROPEC.2016.7830614 – ident: 11270_CR23 doi: 10.1007/978-3-030-43680-3_12 – volume: 2 start-page: 123 issue: 2 year: 1994 ident: 11270_CR32 publication-title: Evol Comput doi: 10.1162/evco.1994.2.2.123 – volume: 60 year: 2021 ident: 11270_CR6 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100796 – volume: 66 start-page: 1 year: 2021 ident: 11270_CR25 publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TAC.2020.2972824 – ident: 11270_CR29 doi: 10.1109/ROPEC.2015.7395159 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 11270_CR27 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – ident: 11270_CR14 doi: 10.1007/978-3-031-08266-5_17 – volume: 7 start-page: 8 issue: 33 year: 2013 ident: 11270_CR43 publication-title: Gene – ident: 11270_CR17 – ident: 11270_CR42 – volume: 18 start-page: 131 issue: 3 year: 1996 ident: 11270_CR36 publication-title: OR Spektrum doi: 10.1007/BF01539705 – volume: 27 start-page: 23 issue: 2 year: 2022 ident: 11270_CR3 publication-title: Math Comput Appl – volume: 44 start-page: 115 year: 2017 ident: 11270_CR22 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2017.04.017 – ident: 11270_CR15 – ident: 11270_CR38 – ident: 11270_CR40 – volume: 296 start-page: 393 issue: 2 year: 2022 ident: 11270_CR26 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2021.04.032 – ident: 11270_CR21 doi: 10.1109/DT.2017.8024288 – ident: 11270_CR16 doi: 10.1007/978-3-030-68776-2_10 – volume: 86 year: 2024 ident: 11270_CR30 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2024.101490 – volume-title: Knapsack problems: algorithms and computer implementations year: 1990 ident: 11270_CR31 – volume: 2 start-page: 5 issue: 1 year: 1996 ident: 11270_CR33 publication-title: J Heuristics doi: 10.1007/BF00226291 – volume: 12 start-page: 2177 issue: 6 year: 2020 ident: 11270_CR24 publication-title: Sustainability doi: 10.3390/su12062177 – ident: 11270_CR4 – ident: 11270_CR7 doi: 10.1007/978-3-540-69432-8 – volume: 207 start-page: 55 issue: 1 year: 2010 ident: 11270_CR39 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2010.03.030 – volume: 316 start-page: 457 year: 2015 ident: 11270_CR41 publication-title: Inf Sci doi: 10.1016/j.ins.2014.10.035 – ident: 11270_CR12 doi: 10.1109/ROBOT.1992.220088 – volume: 53 year: 2020 ident: 11270_CR5 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2019.100643 – volume: 3 start-page: 124 issue: 2 year: 1999 ident: 11270_CR8 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.771166 – volume: 38 start-page: 484 issue: 2 year: 2011 ident: 11270_CR28 publication-title: Comput Oper Res doi: 10.1016/j.cor.2010.07.006 – volume: 19 start-page: 167 issue: 2 year: 2014 ident: 11270_CR11 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2014.2308294 |
| SSID | ssj0004685 |
| Score | 2.3954878 |
| Snippet | Genetic algorithms can solve many complex problems, including designing and optimizing machine learning techniques like neural networks, as well as challenges... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 27811 |
| SubjectTerms | Adaptive control Artificial Intelligence Combinatorial analysis Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Configuration management Data Mining and Knowledge Discovery Design Exploitation Genetic algorithms Heuristic methods Image Processing and Computer Vision Machine learning Mutation Neural networks Optimization Parameter identification Probability and Statistics in Computer Science Production management S.I.: 2023 India International Congress on Computational Intelligence Solution space Space exploration Special Issue on 2023 India International Congress on Computational Intelligence |
| Title | An experimental approach to design deterministic and adaptive control schemes for grouping genetic algorithms |
| URI | https://link.springer.com/article/10.1007/s00521-025-11270-x https://www.proquest.com/docview/3267748935 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQYWChPEWhIA9sYKnOw7HHClExVYiXukV2zoFKNK2agPrzuThJWxAMMGVIfLLubN938d13hFyoIFW6F2CYahLBAl_7zAgImQcaAaoAaQy4ZhPRcChHI3VXF4XlTbZ7cyXpTuplsVv5BxNleiHj5XUpQ-S4ie5Olg0b7h-e16ohXSNOjFvKnJ7Ar0tlfpbx1R2tMOa3a1HnbQbt_81zl-zU6JL2q-WwRzZstk_aTecGWm_kAzLpZ3Sd25821OK0mFJwSR34qBJlHJMz1RlQDXpWno60zm-nGBnbic0pAl_qykNwnhRXpHUj3l6m83HxOskPydPg5vH6ltWNF1jCZbRgUqdGhtY3ElSUSIxhQ6GlkakFiAzYVAqjU-6lCQjweBoYpSW6euAB11ZI_4i0smlmjwlFUSA8AO6VvPemJxMlJEKKsuGHsjbpkMtG__Gs4teIl0zKTpMxajJ2mowXHdJtTBTXey2PEYBGjkMn7JCrxiSr179LO_nb56dk26usynq8S1rF_N2eka3koxjn83O3Bj8BKiLZ-g |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QIMGF8RSDATlwg0jrK02PE2IaYkwIBtqtSuoUJrFuWgvaz8dN220gOMCphzZWZCfx58b-TMh54MaBbLoYpqqIM9eRDlMcPGaDRIDKQSgFptmE3-uJwSC4L4vC0irbvbqSNCf1vNgt_4OJMm2PWfl1KUPkuOaix8oZ8x8en5eqIU0jToxb8pwe1ylLZX6W8dUdLTDmt2tR423atf_Nc5tsleiStorlsENWdLJLalXnBlpu5D0yaiV0mdufVtTiNBtTMEkd-CgSZQyTM5UJUAlykp-OtMxvpxgZ65FOKQJfaspDcJ4UV6Q2I95extNh9jpK98lT-7p_1WFl4wUWWcKfMSFjJTztKAGBHwmMYT0uhRKxBvAV6FhwJWPLjiPgYFuxqwIp0NWD5VpSc-EckNVknOhDQlEUcBvAsnPee9UUUcAFQoq84UegdVQnF5X-w0nBrxHOmZSNJkPUZGg0Gc7qpFGZKCz3WhoiAPUNh45XJ5eVSRavf5d29LfPz8hGp3_XDbs3vdtjsmkXFmZNq0FWs-m7PiHr0Uc2TKenZj1-Ams93N4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QQIgL4ykGA3LgBtHWV5oeJ2ACgaZJPLRbldQJTGLdtBa0n0-StttAcECcemhrRbbTfK7tzwidRb6KeNvXYapIKPE97hFBISAucA1QKTAhwA6bCHs9NhhE_aUuflvtXqUki54Gw9KU5q0JqNa88c38zdTy3YA4JnVKNIpc9U0hvYnXH56XOiPtUE4dw5j6Ht8r22Z-lvH1aFrgzW8pUnvydOv_X_MW2ixRJ-4UbrKNVmS6g-rVRAdcbvBdNOqkeJnzH1eU4zgfY7DFHvpSFNBYhmfMU8Ac-MR8NXFZ9451xCxHMsMaEGPbNqLXjLWnSvvG28t4OsxfR9keeupeP17ekHIgA0kcFs4I40qwQHqCQRQmTMe2AeVMMCUBQgFSMSq4clyVAAXXUb6IONMQABzf4ZIybx_V0nEqDxDWooC6AI5r-PBFmyURZRpqmEEgkZRJA51XtognBe9GPGdYtpqMtSZjq8l41kDNylxxuQezWAPT0HLrBA10UZlncft3aYd_e_wUrfevuvH9be_uCG24hYFJ22miWj59l8doLfnIh9n0xLrmJwv-5cI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+experimental+approach+to+design+deterministic+and+adaptive+control+schemes+for+grouping+genetic+algorithms&rft.jtitle=Neural+computing+%26+applications&rft.au=Flores-Torres%2C+Leonardo&rft.au=Quiroz-Castellanos%2C+Marcela&rft.au=Ramos-Figueroa%2C+Octavio&rft.au=Amador-Larrea%2C+Stephanie&rft.date=2025-11-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=33&rft.spage=27811&rft.epage=27840&rft_id=info:doi/10.1007%2Fs00521-025-11270-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_025_11270_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |