An experimental approach to design deterministic and adaptive control schemes for grouping genetic algorithms

Genetic algorithms can solve many complex problems, including designing and optimizing machine learning techniques like neural networks, as well as challenges in production management and engineering. Paradoxically, the design of these methods, which aim to solve optimization problems efficiently, d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 37; číslo 33; s. 27811 - 27840
Hlavní autoři: Flores-Torres, Leonardo, Quiroz-Castellanos, Marcela, Ramos-Figueroa, Octavio, Amador-Larrea, Stephanie
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.11.2025
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Genetic algorithms can solve many complex problems, including designing and optimizing machine learning techniques like neural networks, as well as challenges in production management and engineering. Paradoxically, the design of these methods, which aim to solve optimization problems efficiently, depends, in turn, on their components’ design and optimal configuration. Grouping genetic algorithms (GGAs) have excelled in performance and adaptability as one of the best metaheuristics for solving combinatorial optimization problems that require finding optimal partitions of sets of items; however, their performance relies heavily on the proper configuration of parameters like population size, crossover rate, and mutation rate. This paper presents an experimental approach for automated parameter control of GGAs, looking for a dynamic adjustment, enhancing the algorithm’s ability to explore the solution space efficiently, avoid premature convergence, and improve overall solution quality. A comprehensive set of deterministic and adaptive control schemes is introduced for on-line parameter setting in GGAs. The approach is tested by studying three state-of-the-art algorithms for solving complex instances of three NP-hard optimization problems: the Grouping Genetic Algorithm with Controlled Gene Transmission for the One-Dimensional Bin Packing Problem, the Grouping Genetic Algorithm with Intelligent Heuristic Strategies for the Parallel-Machine Scheduling Problem with Unrelated Machines and Makespan Minimization, and the Grouping Genetic Algorithm for Variable Decomposition in Large-Scale Constrained Optimization Problems. The experimental results showed that the proposed approach allows for identifying parameter control schemes that save the extensive task of off-line parameter fine-tuning, obtaining a robust and competitive performance on different benchmark sets, and outperforming the published results for some classes of instances.
AbstractList Genetic algorithms can solve many complex problems, including designing and optimizing machine learning techniques like neural networks, as well as challenges in production management and engineering. Paradoxically, the design of these methods, which aim to solve optimization problems efficiently, depends, in turn, on their components’ design and optimal configuration. Grouping genetic algorithms (GGAs) have excelled in performance and adaptability as one of the best metaheuristics for solving combinatorial optimization problems that require finding optimal partitions of sets of items; however, their performance relies heavily on the proper configuration of parameters like population size, crossover rate, and mutation rate. This paper presents an experimental approach for automated parameter control of GGAs, looking for a dynamic adjustment, enhancing the algorithm’s ability to explore the solution space efficiently, avoid premature convergence, and improve overall solution quality. A comprehensive set of deterministic and adaptive control schemes is introduced for on-line parameter setting in GGAs. The approach is tested by studying three state-of-the-art algorithms for solving complex instances of three NP-hard optimization problems: the Grouping Genetic Algorithm with Controlled Gene Transmission for the One-Dimensional Bin Packing Problem, the Grouping Genetic Algorithm with Intelligent Heuristic Strategies for the Parallel-Machine Scheduling Problem with Unrelated Machines and Makespan Minimization, and the Grouping Genetic Algorithm for Variable Decomposition in Large-Scale Constrained Optimization Problems. The experimental results showed that the proposed approach allows for identifying parameter control schemes that save the extensive task of off-line parameter fine-tuning, obtaining a robust and competitive performance on different benchmark sets, and outperforming the published results for some classes of instances.
Author Amador-Larrea, Stephanie
Ramos-Figueroa, Octavio
Flores-Torres, Leonardo
Quiroz-Castellanos, Marcela
Author_xml – sequence: 1
  givenname: Leonardo
  orcidid: 0009-0005-0324-7708
  surname: Flores-Torres
  fullname: Flores-Torres, Leonardo
  email: leonardoflotor@outlook.com, leonardoflotor@gmail.com
  organization: Artificial Intelligence Research Institute, Universidad Veracruzana
– sequence: 2
  givenname: Marcela
  orcidid: 0000-0001-8078-9491
  surname: Quiroz-Castellanos
  fullname: Quiroz-Castellanos, Marcela
  email: maquiroz@uv.mx
  organization: Artificial Intelligence Research Institute, Universidad Veracruzana
– sequence: 3
  givenname: Octavio
  orcidid: 0000-0002-1170-2951
  surname: Ramos-Figueroa
  fullname: Ramos-Figueroa, Octavio
  organization: Artificial Intelligence Research Institute, Universidad Veracruzana
– sequence: 4
  givenname: Stephanie
  surname: Amador-Larrea
  fullname: Amador-Larrea, Stephanie
  organization: Artificial Intelligence Research Institute, Universidad Veracruzana
BookMark eNp9kD1PwzAQhi1UJNrCH2CyxByw48RxxqriS6rEArPl2Oc0VWIHO0Xh32MoEhvTDfc-7-meFVo47wCha0puKSHVXSSkzGlG8jKjNK9INp-hJS0YyxgpxQItSV2kNS_YBVrFeCCEFFyUSzRsHIZ5hNAN4CbVYzWOwSu9x5PHBmLXujQmCEPnujh1GitnsDJqnLoPwNq7KfgeR72HASK2PuA2-OPYuRa34OCH6Fsfumk_xEt0blUf4ep3rtHbw_3r9inbvTw-bze7TFNRzZlQthElsEaYutJCsKrkSjTCgjFVY8AK3ihLc6sNNzm1RVMrUeTc0IIq4IKt0c2pN_3yfoQ4yYM_BpdOSpbzqipEzcqUyk8pHXyMAawckwYVPiUl8lurPGmVSav80SrnBLETFFPYtRD-qv-hvgBaUIBp
Cites_doi 10.1016/j.engappai.2023.106246
10.1016/j.eswa.2012.02.149
10.13053/cys-26-2-4249
10.1109/LCNSymposium50271.2020.9363254
10.1016/S0969-6016(97)00025-7
10.1145/2480741.2480752
10.1016/S0305-0548(96)00082-2
10.1016/j.cor.2014.10.010
10.1109/ROPEC.2016.7830614
10.1007/978-3-030-43680-3_12
10.1162/evco.1994.2.2.123
10.1016/j.swevo.2020.100796
10.1109/TAC.2020.2972824
10.1109/ROPEC.2015.7395159
10.1109/4235.585893
10.1007/978-3-031-08266-5_17
10.1007/BF01539705
10.1016/j.jmsy.2017.04.017
10.1016/j.ejor.2021.04.032
10.1109/DT.2017.8024288
10.1007/978-3-030-68776-2_10
10.1016/j.swevo.2024.101490
10.1007/BF00226291
10.3390/su12062177
10.1007/978-3-540-69432-8
10.1016/j.ejor.2010.03.030
10.1016/j.ins.2014.10.035
10.1109/ROBOT.1992.220088
10.1016/j.swevo.2019.100643
10.1109/4235.771166
10.1016/j.cor.2010.07.006
10.1109/TEVC.2014.2308294
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s00521-025-11270-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 27840
ExternalDocumentID 10_1007_s00521_025_11270_x
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c187x-8afb85e3b8d97c883756a8b8fedd7bdef86baf12fcd6d21f4b9a8426d141ae683
IEDL.DBID RSV
ISSN 0941-0643
IngestDate Wed Nov 05 08:48:13 EST 2025
Sat Nov 29 06:57:03 EST 2025
Mon Nov 03 01:30:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords Grouping genetic algorithm
Parameter setting
Parameter control
Adaptive control
Deterministic control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c187x-8afb85e3b8d97c883756a8b8fedd7bdef86baf12fcd6d21f4b9a8426d141ae683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8078-9491
0009-0005-0324-7708
0000-0002-1170-2951
PQID 3267748935
PQPubID 2043988
PageCount 30
ParticipantIDs proquest_journals_3267748935
crossref_primary_10_1007_s00521_025_11270_x
springer_journals_10_1007_s00521_025_11270_x
PublicationCentury 2000
PublicationDate 20251100
2025-11-00
20251101
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 20251100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 11270_CR7
11270_CR4
E Sayed (11270_CR41) 2015; 316
E Falkenauer (11270_CR32) 1994; 2
O Ramos-Figueroa (11270_CR30) 2024; 86
LE Agustín-Blas (11270_CR20) 2012; 39
11270_CR29
O Ramos-Figueroa (11270_CR2) 2023; 28
11270_CR23
P Schwerin (11270_CR35) 1997; 4
G Carmona-Arroyo (11270_CR3) 2022; 27
11270_CR42
11270_CR21
11270_CR44
N Jawahar (11270_CR22) 2017; 44
11270_CR40
M Karimi-Mamaghan (11270_CR26) 2022; 296
O Ramos-Figueroa (11270_CR6) 2021; 60
L Fanjul-Peyro (11270_CR39) 2010; 207
M Črepinšek (11270_CR9) 2013; 45
S Martello (11270_CR31) 1990
J-H Huh (11270_CR24) 2020; 12
A Scholl (11270_CR34) 1997; 24
E Falkenauer (11270_CR33) 1996; 2
C Ruther (11270_CR25) 2021; 66
O Ramos-Figueroa (11270_CR5) 2020; 53
G Karafotias (11270_CR11) 2014; 19
M Quiroz-Castellanos (11270_CR1) 2015; 55
11270_CR16
G Wäscher (11270_CR36) 1996; 18
11270_CR38
11270_CR17
11270_CR18
DH Wolpert (11270_CR27) 1997; 1
11270_CR12
11270_CR13
AE Eiben (11270_CR8) 1999; 3
11270_CR14
11270_CR15
G Srivastava (11270_CR19) 2023; 123
LE Agustín-Blas (11270_CR28) 2011; 38
11270_CR37
11270_CR10
X Li (11270_CR43) 2013; 7
References_xml – volume: 123
  year: 2023
  ident: 11270_CR19
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106246
– volume: 39
  start-page: 9695
  issue: 10
  year: 2012
  ident: 11270_CR20
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.02.149
– volume: 28
  start-page: 6
  issue: 1
  year: 2023
  ident: 11270_CR2
  publication-title: Math Comput Appl
– ident: 11270_CR13
  doi: 10.13053/cys-26-2-4249
– ident: 11270_CR37
– ident: 11270_CR10
– ident: 11270_CR18
  doi: 10.1109/LCNSymposium50271.2020.9363254
– volume: 4
  start-page: 377
  issue: 5–6
  year: 1997
  ident: 11270_CR35
  publication-title: Int Trans Oper Res
  doi: 10.1016/S0969-6016(97)00025-7
– volume: 45
  start-page: 1
  issue: 3
  year: 2013
  ident: 11270_CR9
  publication-title: ACM Comput Surv
  doi: 10.1145/2480741.2480752
– volume: 24
  start-page: 627
  issue: 7
  year: 1997
  ident: 11270_CR34
  publication-title: Comput Oper Res
  doi: 10.1016/S0305-0548(96)00082-2
– volume: 55
  start-page: 52
  year: 2015
  ident: 11270_CR1
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2014.10.010
– ident: 11270_CR44
  doi: 10.1109/ROPEC.2016.7830614
– ident: 11270_CR23
  doi: 10.1007/978-3-030-43680-3_12
– volume: 2
  start-page: 123
  issue: 2
  year: 1994
  ident: 11270_CR32
  publication-title: Evol Comput
  doi: 10.1162/evco.1994.2.2.123
– volume: 60
  year: 2021
  ident: 11270_CR6
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100796
– volume: 66
  start-page: 1
  year: 2021
  ident: 11270_CR25
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TAC.2020.2972824
– ident: 11270_CR29
  doi: 10.1109/ROPEC.2015.7395159
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 11270_CR27
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– ident: 11270_CR14
  doi: 10.1007/978-3-031-08266-5_17
– volume: 7
  start-page: 8
  issue: 33
  year: 2013
  ident: 11270_CR43
  publication-title: Gene
– ident: 11270_CR17
– ident: 11270_CR42
– volume: 18
  start-page: 131
  issue: 3
  year: 1996
  ident: 11270_CR36
  publication-title: OR Spektrum
  doi: 10.1007/BF01539705
– volume: 27
  start-page: 23
  issue: 2
  year: 2022
  ident: 11270_CR3
  publication-title: Math Comput Appl
– volume: 44
  start-page: 115
  year: 2017
  ident: 11270_CR22
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2017.04.017
– ident: 11270_CR15
– ident: 11270_CR38
– ident: 11270_CR40
– volume: 296
  start-page: 393
  issue: 2
  year: 2022
  ident: 11270_CR26
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2021.04.032
– ident: 11270_CR21
  doi: 10.1109/DT.2017.8024288
– ident: 11270_CR16
  doi: 10.1007/978-3-030-68776-2_10
– volume: 86
  year: 2024
  ident: 11270_CR30
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2024.101490
– volume-title: Knapsack problems: algorithms and computer implementations
  year: 1990
  ident: 11270_CR31
– volume: 2
  start-page: 5
  issue: 1
  year: 1996
  ident: 11270_CR33
  publication-title: J Heuristics
  doi: 10.1007/BF00226291
– volume: 12
  start-page: 2177
  issue: 6
  year: 2020
  ident: 11270_CR24
  publication-title: Sustainability
  doi: 10.3390/su12062177
– ident: 11270_CR4
– ident: 11270_CR7
  doi: 10.1007/978-3-540-69432-8
– volume: 207
  start-page: 55
  issue: 1
  year: 2010
  ident: 11270_CR39
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.03.030
– volume: 316
  start-page: 457
  year: 2015
  ident: 11270_CR41
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.10.035
– ident: 11270_CR12
  doi: 10.1109/ROBOT.1992.220088
– volume: 53
  year: 2020
  ident: 11270_CR5
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2019.100643
– volume: 3
  start-page: 124
  issue: 2
  year: 1999
  ident: 11270_CR8
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.771166
– volume: 38
  start-page: 484
  issue: 2
  year: 2011
  ident: 11270_CR28
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2010.07.006
– volume: 19
  start-page: 167
  issue: 2
  year: 2014
  ident: 11270_CR11
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2014.2308294
SSID ssj0004685
Score 2.395574
Snippet Genetic algorithms can solve many complex problems, including designing and optimizing machine learning techniques like neural networks, as well as challenges...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 27811
SubjectTerms Adaptive control
Artificial Intelligence
Combinatorial analysis
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Configuration management
Data Mining and Knowledge Discovery
Design
Exploitation
Genetic algorithms
Heuristic methods
Image Processing and Computer Vision
Machine learning
Mutation
Neural networks
Optimization
Parameter identification
Probability and Statistics in Computer Science
Production management
S.I.: 2023 India International Congress on Computational Intelligence
Solution space
Space exploration
Special Issue on 2023 India International Congress on Computational Intelligence
Title An experimental approach to design deterministic and adaptive control schemes for grouping genetic algorithms
URI https://link.springer.com/article/10.1007/s00521-025-11270-x
https://www.proquest.com/docview/3267748935
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQYWChPEWhIA9sYKmOk9gZK0TFgCrES90sO7ahEk2rJqD-fC5OQguCAaYMTizrzr77Lr77DqEzqiHmsooTC3gXAhQeEQ2eGoyhNS5kLhIVz-wNHw7FaJTc1kVheZPt3lxJekv9WexW_sGE0DeICC2vSwkgx3Vwd6Js2HB3_7RSDekbcULcUub0hKwulfl5jq_uaIkxv12Lem8zaP9vndtoq0aXuF9thx20ZrNd1G46N-D6IO-hST_Dq9z-uKEWx8UUG5_UAY8qUcYzOWOVGayMmpXWEdf57RgiYzuxOQbgi315CKwTw460_ovX5-l8XLxM8n30OLh6uLwmdeMFklLBF0Qop0VkmRYm4amAGDaKldDCWWO4NtaJWCtHA5ea2ATUhTpRAly9oSFVNhbsALWyaWYPEQ4YZ6xnYdirnutYA0R1DAyNTSITddB5I385q_g15CeTspekBElKL0m56KBuoyJZn7VcAgDlnkMHJrtoVLIc_n22o7-9fow2g0qrpEe7qFXM3-wJ2kjfi3E-P_V78AM5_NlM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA6igr44f-J0ah5808LatE36OMQxcQ7RKXsLSZPowHVjrbI_32vablP0QZ_6kDaEu-Tuu97dF4TOXQkxlxbU0YB3IUChgSPBU4Mx1Mr4xASs4Jnt0l6PDQbRfdkUllbV7lVK0lrqebNb_gcTQl8vcNw8XeoAclzzwWPljPkPj89L3ZD2Ik6IW_KaHp-UrTI_z_HVHS0w5re0qPU27dr_1rmNtkp0iVvFdthBKzrZRbXq5gZcHuQ9NGoleJnbH1fU4jgbY2WLOuBRFMpYJmcsEoWFEpPcOuKyvh1DZKxHOsUAfLFtD4F1YtiR2n7x9jKeDrPXUbqPntrX_auOU1684MQuozOHCSNZoIlkKqIxgxg2CAWTzGilqFTasFAK43omVqHyXOPLSDBw9cr1XaFDRg7QajJO9CHCHqGENDUMW9VTGUqAqIaAodFRoII6uqjkzycFvwafMylbSXKQJLeS5LM6alQq4uVZSzkAUGo5dGCyy0oli-HfZzv62-tnaKPTv-vy7k3v9hhteoWGnabbQKvZ9F2foPX4Ixum01O7Hz8Bcu_cMA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iIl6cnzidmoM3DVv6lfQ41KE4xsAPditJk-jAdWOtsj_f17TdpuhBPPWQNoS8l-T363vvF4TOqQTOpQUjGvAuEBTmEwknNWyGWhnPNT4vdGa7rNfjg0HYX6rit9nuVUiyqGnIVZqSrDlRpjkvfMv_ZgINdnxC89ApARS55uWJ9Dlff3heqoy0l3ICh8nzezy3LJv5uY-vR9MCb34LkdqTp1P7_5i30VaJOnG7cJMdtKKTXVSrbnTA5QLfQ6N2gpc1_3ElOY6zMVY22QMeRQKNVXjGIlFYKDHJd01c5r1jYMx6pFMMgBjbshEYMwZP1faLt5fxdJi9jtJ99NS5eby6JeWFDCSmnM0IF0ZyX7uSq5DFHLitHwguudFKMam04YEUhjomVoFyqPFkKDhAAEU9KnTA3QO0mowTfYiw4zLXbWloti7BZCABuhoXNiAd-sqvo4vKFtGk0N2I5grLdiYjmMnIzmQ0q6NGZa6oXINpBMCUWW0d6OyyMs-i-ffejv72-hna6F93ou5d7_4YbTqFgUmLNtBqNn3XJ2g9_siG6fTUuuYnBFblFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+experimental+approach+to+design+deterministic+and+adaptive+control+schemes+for+grouping+genetic+algorithms&rft.jtitle=Neural+computing+%26+applications&rft.au=Flores-Torres%2C+Leonardo&rft.au=Quiroz-Castellanos%2C+Marcela&rft.au=Ramos-Figueroa%2C+Octavio&rft.au=Amador-Larrea%2C+Stephanie&rft.date=2025-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=33&rft.spage=27811&rft.epage=27840&rft_id=info:doi/10.1007%2Fs00521-025-11270-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon