ENNP: an enhanced neural networks-based power consumption prediction algorithm to deep learning-based workloads on AI-enabled data centers
The traditional power consumption prediction algorithms are no longer suitable for deep learning-based workloads owing to the long-term dependencies and highly volatile nature of power usage in such applications. To address these challenges, this study proposes ENNP, an enhanced neural network-based...
Saved in:
| Published in: | Cluster computing Vol. 29; no. 1; p. 36 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.02.2026
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1386-7857, 1573-7543 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The traditional power consumption prediction algorithms are no longer suitable for deep learning-based workloads owing to the long-term dependencies and highly volatile nature of power usage in such applications. To address these challenges, this study proposes ENNP, an enhanced neural network-based power consumption prediction algorithm for deep learning-based workloads in AI-enabled data centers. In general, ENNP inherits the advantages of the TimeMixer framework in mitigating model overfitting. However, direct application of TimeMixer does not provide the flexibility needed to handle complex power consumption patterns. To overcome this limitation, ENNP integrates three key techniques: Bayesian optimization, KAN, and LSTM, to maximize the predictive performance of TimeMixer. Specifically, (1) Bayesian optimization is employed for parameter selection and extraction of multiscale time series; (2) KAN is utilized to reconstruct multiscale time series; and (3) an improved LSTM is adopted to predict on multiscale time series and fusing these predictions to obtain the final prediction. Finally, experiments were conducted on real CPU/GPU servers using trace data collected from various deep learning workloads, including natural language processing, image recognition, multivariable prediction, and anomaly detection jobs. The experimental results show that ENNP achieves the best performance compared with other well-known prediction algorithms such as BP, LSTM, and MLR, as well as recent general time-series prediction models, with a maximum improvement of 38.29% in accuracy. |
|---|---|
| AbstractList | The traditional power consumption prediction algorithms are no longer suitable for deep learning-based workloads owing to the long-term dependencies and highly volatile nature of power usage in such applications. To address these challenges, this study proposes ENNP, an enhanced neural network-based power consumption prediction algorithm for deep learning-based workloads in AI-enabled data centers. In general, ENNP inherits the advantages of the TimeMixer framework in mitigating model overfitting. However, direct application of TimeMixer does not provide the flexibility needed to handle complex power consumption patterns. To overcome this limitation, ENNP integrates three key techniques: Bayesian optimization, KAN, and LSTM, to maximize the predictive performance of TimeMixer. Specifically, (1) Bayesian optimization is employed for parameter selection and extraction of multiscale time series; (2) KAN is utilized to reconstruct multiscale time series; and (3) an improved LSTM is adopted to predict on multiscale time series and fusing these predictions to obtain the final prediction. Finally, experiments were conducted on real CPU/GPU servers using trace data collected from various deep learning workloads, including natural language processing, image recognition, multivariable prediction, and anomaly detection jobs. The experimental results show that ENNP achieves the best performance compared with other well-known prediction algorithms such as BP, LSTM, and MLR, as well as recent general time-series prediction models, with a maximum improvement of 38.29% in accuracy. |
| ArticleNumber | 36 |
| Author | Jing, Chao Wang, Hengdong |
| Author_xml | – sequence: 1 givenname: Hengdong surname: Wang fullname: Wang, Hengdong organization: School of Computer Science and Engineering, Guilin University of Technology – sequence: 2 givenname: Chao surname: Jing fullname: Jing, Chao email: jingchao@glut.edu.cn organization: School of Computer Science and Engineering, Guilin University of Technology, Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology |
| BookMark | eNp9UM1KxDAYDKLg-vMCngKeo0nTbFpvy-LPwqIe9BzS5OvatZvUpKX4Cj610S548zTDfDPzwZygQ-cdIHTB6BWjVF5HRkUxJzQTJJGckvEAzZiQnEiR88PEeTrLQshjdBLjllJayqycoa_bx8fnG6wdBvemnQGLHQxBtwn60Yf3SCodk9r5EQI23sVh1_WNd7gLYBvzS3W78aHp33a499gCdLgFHVzjNvv0T1PrtY04uRcrAk5XbdKt7jU24HoI8Qwd1bqNcL7HU_R6d_uyfCDrp_vVcrEmhhVyJCA4t1zOLa2oqAth5sKCoaWVugJmQMqSZbllsrBVyfOqkLzktsrAFGUpa85P0eXU2wX_MUDs1dYPwaWXimeS81zQQiRXNrlM8DEGqFUXmp0On4pR9bO5mjZXaXP1u7kaU4hPoZjMbgPhr_qf1Dfnnok4 |
| Cites_doi | 10.1109/CVPR.2016.90 10.1109/MCI.2021.3084416 10.1016/j.eswa.2022.117892 10.1609/aaai.v35i12.17325 10.1016/j.eswa.2022.117176 10.1016/j.renene.2023.119706 10.1016/j.ins.2020.09.033 10.1007/s10723-023-09642-5 10.1016/j.jpdc.2022.05.005 10.1016/j.eswa.2024.123325 10.1007/s00607-020-00819-4 10.11591/ijece.v10i2.pp1524-1532 10.1016/j.eswa.2023.122012 10.1109/ACCESS.2021.3125092 10.1016/j.future.2021.10.019 10.1007/s10586-022-03959-8 10.1109/TSUSC.2019.2910129 10.1109/TCC.2017.2737624 10.14778/3665844.3665863 10.1007/s10796-016-9683-5 10.1016/j.eswa.2023.123078 10.1162/neco.1997.9.8.1735 10.1016/j.apenergy.2020.114806 10.1038/s41598-024-68339-1 10.1007/s12652-020-01711-x |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10586-025-05840-w |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| ExternalDocumentID | 10_1007_s10586_025_05840_w |
| GrantInformation_xml | – fundername: Guangxi Key Research and Development Program grantid: GUIKEAB23075116 funderid: https://doi.org/10.13039/501100017691 – fundername: Guangxi Provincial Natural Science Foundation grantid: No.2020GXNSFAA159038 – fundername: Guangxi Science and Technology Major Program grantid: GUIKEAA 24263034 – fundername: National Natural Science Foundation of China grantid: No.62362018 |
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 29B 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFDZB AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM MA- NB0 NPVJJ NQJWS O93 O9J OAM P9O PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AAIAL AARHV AAYTO AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFFHD AFGCZ AFKRA AGGDS AGQPQ AHSBF AJBLW ARAPS BDATZ BENPR BGLVJ BGNMA CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ IHE K7- M4Y N2Q NU0 O9- OVD PHGZM PHGZT PQGLB RNI RZC RZE RZK TEORI JQ2 |
| ID | FETCH-LOGICAL-c187w-e533d376d0b05f85c65dec09d7abe1ce779124d178db934b87393db2ec8997f33 |
| IEDL.DBID | RSV |
| ISSN | 1386-7857 |
| IngestDate | Wed Nov 26 14:41:37 EST 2025 Thu Nov 27 00:31:25 EST 2025 Thu Nov 20 01:10:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Power consumption prediction KAN AI-enabled data centers TimeMixer LSTM Bayesian optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c187w-e533d376d0b05f85c65dec09d7abe1ce779124d178db934b87393db2ec8997f33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3273345085 |
| PQPubID | 2043865 |
| ParticipantIDs | proquest_journals_3273345085 crossref_primary_10_1007_s10586_025_05840_w springer_journals_10_1007_s10586_025_05840_w |
| PublicationCentury | 2000 |
| PublicationDate | 2026-02-01 |
| PublicationDateYYYYMMDD | 2026-02-01 |
| PublicationDate_xml | – month: 02 year: 2026 text: 2026-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2026 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | 5840_CR5 J-T Hong (5840_CR25) 2024; 247 5840_CR34 G-F Fan (5840_CR2) 2024; 238 5840_CR19 5840_CR18 5840_CR17 5840_CR39 A Vaswani (5840_CR31) 2017; 30 X Fu (5840_CR10) 2017; 8 T Deepika (5840_CR9) 2020; 10 KMU Ahmed (5840_CR7) 2021; 9 T Khan (5840_CR13) 2022; 128 J Ji (5840_CR33) 2021; 16 SK Panda (5840_CR37) 2020; 11 5840_CR30 W Lin (5840_CR12) 2023 5840_CR26 5840_CR47 5840_CR46 5840_CR45 C Jing (5840_CR16) 2024; 27 5840_CR29 5840_CR28 H Zhao (5840_CR24) 2024; 220 5840_CR27 C Jin (5840_CR8) 2020; 265 Y Chen (5840_CR1) 2024; 245 X Huo (5840_CR3) 2022; 201 S Hochreiter (5840_CR32) 1997; 9 X Qiu (5840_CR23) 2024; 17 Z Zhou (5840_CR36) 2022; 167 SK Panda (5840_CR35) 2018; 20 W Lin (5840_CR6) 2019; 5 A Tarafdar (5840_CR15) 2023; 21 H Zhang (5840_CR14) 2024; 14 H Wu (5840_CR38) 2021; 34 W Lin (5840_CR11) 2021; 547 5840_CR40 5840_CR22 5840_CR44 5840_CR21 5840_CR43 Z Ji (5840_CR4) 2022; 206 5840_CR20 5840_CR42 5840_CR41 |
| References_xml | – ident: 5840_CR19 – ident: 5840_CR44 – ident: 5840_CR22 doi: 10.1109/CVPR.2016.90 – volume: 16 start-page: 50 issue: 3 year: 2021 ident: 5840_CR33 publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2021.3084416 – volume: 206 year: 2022 ident: 5840_CR4 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117892 – ident: 5840_CR46 – ident: 5840_CR26 doi: 10.1609/aaai.v35i12.17325 – volume: 201 year: 2022 ident: 5840_CR3 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117176 – ident: 5840_CR27 – volume: 220 year: 2024 ident: 5840_CR24 publication-title: Renewable Energy doi: 10.1016/j.renene.2023.119706 – volume: 547 start-page: 1045 year: 2021 ident: 5840_CR11 publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.09.033 – ident: 5840_CR42 – volume: 21 issue: 1 year: 2023 ident: 5840_CR15 publication-title: Journal of Grid Computing doi: 10.1007/s10723-023-09642-5 – ident: 5840_CR21 – volume: 167 start-page: 211 year: 2022 ident: 5840_CR36 publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2022.05.005 – ident: 5840_CR40 – ident: 5840_CR5 – volume: 247 year: 2024 ident: 5840_CR25 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2024.123325 – year: 2023 ident: 5840_CR12 publication-title: Computing doi: 10.1007/s00607-020-00819-4 – ident: 5840_CR39 – volume: 10 start-page: 1524 issue: 2 year: 2020 ident: 5840_CR9 publication-title: Int. J. Electr. Comput. Eng. (IJECE) doi: 10.11591/ijece.v10i2.pp1524-1532 – volume: 238 year: 2024 ident: 5840_CR2 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122012 – ident: 5840_CR20 – ident: 5840_CR18 – ident: 5840_CR43 – ident: 5840_CR45 – volume: 9 start-page: 152536 year: 2021 ident: 5840_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3125092 – volume: 34 start-page: 22419 year: 2021 ident: 5840_CR38 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 128 start-page: 320 year: 2022 ident: 5840_CR13 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2021.10.019 – ident: 5840_CR47 – ident: 5840_CR28 – ident: 5840_CR41 – volume: 27 start-page: 377 issue: 1 year: 2024 ident: 5840_CR16 publication-title: Cluster Computing doi: 10.1007/s10586-022-03959-8 – volume: 5 start-page: 329 issue: 3 year: 2019 ident: 5840_CR6 publication-title: IEEE Trans. Sustain. Comput. doi: 10.1109/TSUSC.2019.2910129 – volume: 8 start-page: 246 issue: 1 year: 2017 ident: 5840_CR10 publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2017.2737624 – volume: 17 start-page: 2363 year: 2024 ident: 5840_CR23 publication-title: Proc. VLDB Endow. doi: 10.14778/3665844.3665863 – ident: 5840_CR29 – volume: 30 start-page: I year: 2017 ident: 5840_CR31 publication-title: Adv. Neural Inf. Process. Syst. – volume: 20 start-page: 373 year: 2018 ident: 5840_CR35 publication-title: Inf. Syst. Front. doi: 10.1007/s10796-016-9683-5 – volume: 245 year: 2024 ident: 5840_CR1 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.123078 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 5840_CR32 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 265 year: 2020 ident: 5840_CR8 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114806 – volume: 14 issue: 1 year: 2024 ident: 5840_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-024-68339-1 – ident: 5840_CR17 – ident: 5840_CR34 – ident: 5840_CR30 – volume: 11 start-page: 4643 year: 2020 ident: 5840_CR37 publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-020-01711-x |
| SSID | ssj0009729 |
| Score | 2.3744223 |
| Snippet | The traditional power consumption prediction algorithms are no longer suitable for deep learning-based workloads owing to the long-term dependencies and highly... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 36 |
| SubjectTerms | Accuracy Algorithms Anomalies Bayesian analysis Computer centers Computer Communication Networks Computer Science Data centers Deep learning Machine learning Natural language processing Neural networks Operating Systems Optimization Power consumption Prediction models Processor Architectures Time series Workload Workloads |
| Title | ENNP: an enhanced neural networks-based power consumption prediction algorithm to deep learning-based workloads on AI-enabled data centers |
| URI | https://link.springer.com/article/10.1007/s10586-025-05840-w https://www.proquest.com/docview/3273345085 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46ffDFecXplDz4poE2bZbUtyEbClKGl7G3kls3YbZjne4_-KtNspaq6IO-BXISQm7nC_nO-QA4lxHmxOcpwpISFEqPIxFxgTiOQo9LgrmTexve0Thmo1E0KIPCiortXn1Jupv6U7AbYZYwS5AphB5aroMN4-6YFWy4fxjWqXap0ybzA2NNGaFlqMzPfXx1RzXG_PYt6rxNv_m_ce6A7RJdwu5qO-yCNZ3tgWal3ADLg7wP3ntxPLiCPIM6mzgOALSJLU3TbEULL5B1bwrOrIgalC5O010ucDa3XzuuyKfjfP68mLzARQ6V1jNYalCMy9a2p2nOVQGNdfcWaReopaClpUJLCzXY8wA89XuP1zeoVGVA0md0ibQBiMpcS8oTHkkZkR2itPQiRbnQvtSURgYzKJ8yJaIgFMzm3FMCa2medjQNgkPQyPJMHwHYUSGmUepLYx_6TNj61BMdzrHPPaxb4KJanGS2Sr6R1GmW7TQnZpoTN83JsgXa1fol5UEsksDAsyA0KJS0wGW1XnX1770d_838BGxh85xd8bnboLGYv-pTsCnfFs_F_Mxt0A8-y-Nt |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58gV6sT6xWzcGbBnazm2bXW5GKYl3EF96WvLYt6LZ0q_0P_mqTdJeq6EFvgUxCmCQzX8g3MwBHMiac-jzDRDKKQ-lxLGIuMCdx6HFJCXfl3h47LEmip6f4pgwKKyq2e_Ul6Sz1p2A3GlnCLMWmEXp4Mg-LofFYNmP-7d3jLNUuc7XJ_MBIs4iyMlTm5zm-uqMZxvz2Leq8zXntf-tcg9USXaLW9Disw5zON6BWVW5A5UXehPd2ktycIp4jnfccBwDZxJZmaD6lhRfYujeFhraIGpIuTtMZFzQc2a8d1-TP3cGoP-69oPEAKa2HqKxB0S1H25meB1wVyEi3LrF2gVoKWVoqsrRQgz234OG8fX92gcuqDFj6EZtgbQCiMmZJecKjWURlkyotvVgxLrQvNWOxwQzKZ5EScRCKyObcU4JoaZ52LAuCbVjIB7neAdRUIWFx5ksjH_qRsP2ZJ5qcE597RNfhuNqcdDhNvpHO0ixbNadGzalTczqpQ6Pav7S8iEUaGHgWhAaF0jqcVPs16_59tt2_iR_C8sX9dSftXCZXe7BCzNN2yu1uwMJ49Kr3YUm-jfvF6MAd1g_wkOZR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IV5cn7i6ag7eNNimzab1JuqiKGXBB95KXlVBu2W3uv_BX22StqyKHsRbIJMQMnl8w3wzA7AnY8KpzzNMJKM4lB7HIuYCcxKHHpeUcFfu7e6KJUl0fx_3P0XxO7Z745KsYhpslqa8PCxUdvgp8I1GljxLsWmEHh5Pw2xoifTWXr--m6TdZa5OmR8YaRZRVofN_DzH169pgje_uUjdz9Nr_X_NS7BYo050XB2TZZjS-Qq0mooOqL7gq_B-liT9I8RzpPNHxw1ANuGlGZpXdPERtt-eQoUtroaki990jw4qhtbl45r8-WEwfCofX1A5QErrAtW1KR7q0Xam5wFXI2Skjy-wdgFcClm6KrJ0UYNJ1-C2d3Zzco7rag1Y-hEbY22AozLPlfKER7OIyi5VWnqxYlxoX2rGYoMllM8iJeIgFJHNxacE0dKYfCwLgnWYyQe53gDUVSFhceZLIx_6kbD9mSe6nBOfe0S3Yb9RVFpUSTnSSfplu82p2ebUbXM6bkOn0WVaX9BRGhjYFoQGndI2HDS6m3T_Ptvm38R3Yb5_2kuvLpLLLVggxuKtKN8dmCmHr3ob5uRb-TQa7rhz-wGZ5u81 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ENNP%3A+an+enhanced+neural+networks-based+power+consumption+prediction+algorithm+to+deep+learning-based+workloads+on+AI-enabled+data+centers&rft.jtitle=Cluster+computing&rft.au=Wang%2C+Hengdong&rft.au=Jing%2C+Chao&rft.date=2026-02-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1007%2Fs10586-025-05840-w&rft.externalDocID=10_1007_s10586_025_05840_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |