Evaluation of LSTM for predicting grip strength using electromyography: a comparison of setups and methods

Despite decades of research in prosthetics and myocontrol, using electromyography (EMG) to accurately predict the force a user grasps an object with is still a subject of investigation. Although the problem seems trivial, the optimal EMG setup, able to deliver high prediction accuracy at a minimal e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 37; číslo 21; s. 16461 - 16485
Hlavní autoři: Anam, Khairul, Sudrajat, Ahmad, Rizal, Naufal Ainur, Intyanto, Gramandha Wega, Muldayani, Wahyu, Negara, Mohamad Agung Prawira, Sumardi, Bukhori, Saiful, Gitakarma, Made Santo, Castellini, Claudio
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.07.2025
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Despite decades of research in prosthetics and myocontrol, using electromyography (EMG) to accurately predict the force a user grasps an object with is still a subject of investigation. Although the problem seems trivial, the optimal EMG setup, able to deliver high prediction accuracy at a minimal economic and computational cost needs to be found. In this work, we compare several EMG setups consisting of one to eight sensors and deep learning methods to find out which combination is most convenient. In particular, we compare long short-term memory (LSTM), together with a stacked autoencoder (LSTM–SAE) and an attention mechanism (LSTMATT). Our experimental results reveal that, while the best performance is attained by LSTM–SAE (coefficient of correlation 0.9867 ± 0.0087 , coefficient of determination 0.9676 ± 0.0489 , normalized root mean square error 0.048 ± 0.0213 ), statistically significant differences can only be found when the number of sensors is drastically reduced, namely to 2 sensors, in which case, anyway, the performance is still close to optimal and even surpasses state-of-the-art methods. Further research will focus on testing the optimal approach and setup online on amputated users using prosthetic hardware in daily living activities.
AbstractList Despite decades of research in prosthetics and myocontrol, using electromyography (EMG) to accurately predict the force a user grasps an object with is still a subject of investigation. Although the problem seems trivial, the optimal EMG setup, able to deliver high prediction accuracy at a minimal economic and computational cost needs to be found. In this work, we compare several EMG setups consisting of one to eight sensors and deep learning methods to find out which combination is most convenient. In particular, we compare long short-term memory (LSTM), together with a stacked autoencoder (LSTM–SAE) and an attention mechanism (LSTMATT). Our experimental results reveal that, while the best performance is attained by LSTM–SAE (coefficient of correlation 0.9867 ± 0.0087 , coefficient of determination 0.9676 ± 0.0489 , normalized root mean square error 0.048 ± 0.0213 ), statistically significant differences can only be found when the number of sensors is drastically reduced, namely to 2 sensors, in which case, anyway, the performance is still close to optimal and even surpasses state-of-the-art methods. Further research will focus on testing the optimal approach and setup online on amputated users using prosthetic hardware in daily living activities.
Despite decades of research in prosthetics and myocontrol, using electromyography (EMG) to accurately predict the force a user grasps an object with is still a subject of investigation. Although the problem seems trivial, the optimal EMG setup, able to deliver high prediction accuracy at a minimal economic and computational cost needs to be found. In this work, we compare several EMG setups consisting of one to eight sensors and deep learning methods to find out which combination is most convenient. In particular, we compare long short-term memory (LSTM), together with a stacked autoencoder (LSTM–SAE) and an attention mechanism (LSTMATT). Our experimental results reveal that, while the best performance is attained by LSTM–SAE (coefficient of correlation 0.9867±0.0087, coefficient of determination 0.9676±0.0489, normalized root mean square error 0.048±0.0213), statistically significant differences can only be found when the number of sensors is drastically reduced, namely to 2 sensors, in which case, anyway, the performance is still close to optimal and even surpasses state-of-the-art methods. Further research will focus on testing the optimal approach and setup online on amputated users using prosthetic hardware in daily living activities.
Author Intyanto, Gramandha Wega
Negara, Mohamad Agung Prawira
Anam, Khairul
Rizal, Naufal Ainur
Muldayani, Wahyu
Castellini, Claudio
Sudrajat, Ahmad
Gitakarma, Made Santo
Sumardi
Bukhori, Saiful
Author_xml – sequence: 1
  givenname: Khairul
  surname: Anam
  fullname: Anam, Khairul
  email: khairul@unej.ac.id
  organization: Department of Electrical Engineering, Universitas Jember, Intelligent Systems and Robotics Lab, CDAST, Universitas Jember
– sequence: 2
  givenname: Ahmad
  surname: Sudrajat
  fullname: Sudrajat, Ahmad
  organization: Department of Electrical Engineering, Universitas Jember, Intelligent Systems and Robotics Lab, CDAST, Universitas Jember
– sequence: 3
  givenname: Naufal Ainur
  surname: Rizal
  fullname: Rizal, Naufal Ainur
  organization: Department of Electrical Engineering, Universitas Jember, Intelligent Systems and Robotics Lab, CDAST, Universitas Jember
– sequence: 4
  givenname: Gramandha Wega
  surname: Intyanto
  fullname: Intyanto, Gramandha Wega
  organization: Department of Electrical Engineering, Universitas Jember, Intelligent Systems and Robotics Lab, CDAST, Universitas Jember
– sequence: 5
  givenname: Wahyu
  surname: Muldayani
  fullname: Muldayani, Wahyu
  organization: Department of Electrical Engineering, Universitas Jember, Intelligent Systems and Robotics Lab, CDAST, Universitas Jember
– sequence: 6
  givenname: Mohamad Agung Prawira
  surname: Negara
  fullname: Negara, Mohamad Agung Prawira
  organization: Department of Electrical Engineering, Universitas Jember, Intelligent Systems and Robotics Lab, CDAST, Universitas Jember
– sequence: 7
  surname: Sumardi
  fullname: Sumardi
  organization: Department of Electrical Engineering, Universitas Jember, Intelligent Systems and Robotics Lab, CDAST, Universitas Jember
– sequence: 8
  givenname: Saiful
  surname: Bukhori
  fullname: Bukhori, Saiful
  organization: Intelligent Systems and Robotics Lab, CDAST, Universitas Jember, Faculty of Computer Science, CDAST, Universitas Jember
– sequence: 9
  givenname: Made Santo
  surname: Gitakarma
  fullname: Gitakarma, Made Santo
  organization: Department of Electronic Systems Engineering Technology, Universitas Pendidikan Ganesha
– sequence: 10
  givenname: Claudio
  surname: Castellini
  fullname: Castellini, Claudio
  organization: Assistive Intelligent Robotics (AIROB) Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg
BookMark eNp9kE1LwzAYx4NMcJt-AU8Bz9UkT7I23mTMF5h4cJ5DmqZdx5bUJBX27e2s4M3TA_-3B34zNHHeWYSuKbmlhOR3kRDBaEaYyCgFyDN5hqaUA2RARDFBUyL5YC84XKBZjDtCCF8UYop2qy-973VqvcO-xuv3zSuufcBdsFVrUusa3IS2wzEF65q0xX08aXZvTQr-cPRN0N32eI81Nv7Q6dDGcSna1HcRa1fhg01bX8VLdF7rfbRXv3eOPh5Xm-Vztn57elk-rDNDi1xmsrCSa8HKUjDJiRGk5mBqPnhWQFXZ3AgqrCGVKQ1ZFGUFtbZgKJQlcKFhjm7G3S74z97GpHa-D254qYABlXnBGB9SbEyZ4GMMtlZdaA86HBUl6sRUjUzVwFT9MFVyKMFYikPYNTb8Tf_T-gazSn0Y
Cites_doi 10.1371/journal.pone.0220899
10.1016/j.bspc.2022.104088
10.1109/TNSRE.2022.3214866
10.1109/JSEN.2023.3259150
10.3390/s23104940
10.1038/s41598-019-55320-6
10.1016/j.bspc.2021.103099
10.1109/TAI.2021.3066565
10.1016/j.bspc.2021.103036
10.1007/s40747-021-00338-5
10.1016/j.cmpb.2021.106121
10.1016/j.jphysparis.2009.08.008
10.1146/annurev-control-071020-104336
10.3390/s20061642
10.1016/j.bspc.2023.105141
10.1007/s00500-015-1800-8
10.1145/3292500.3330701
10.3390/math11184004
10.3390/s18103226
10.1109/JSEN.2019.2956998
10.3389/fbioe.2022.1034672
10.1088/1741-2552/ab673f
10.1016/j.engappai.2023.106327
10.1016/j.bspc.2018.06.011
10.1109/SISY56759.2022.10036305
10.1016/j.neunet.2016.09.004
10.3389/fnins.2022.1020086
10.1162/neco.1997.9.8.1735
10.1109/THMS.2023.3252817
10.1109/TBME.2023.3234642
10.1109/TNSRE.2020.3022587
10.1038/s41598-023-36490-w
10.1016/j.medengphy.2010.04.004
10.3390/s20154213
10.1109/TIM.2022.3189632
10.3389/978-2-88966-616-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s00521-025-11337-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 16485
ExternalDocumentID 10_1007_s00521_025_11337_9
GrantInformation_xml – fundername: Universitas Jember
  grantid: 7575/UN25.3.1/LT/2023
  funderid: http://dx.doi.org/10.13039/501100018968
– fundername: Direktorat Jenderal Penguatan Riset dan Pengembangan
  grantid: 108/E/KPT/2023
  funderid: http://dx.doi.org/10.13039/501100014952
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c1879-98e94a52bb52940c50f43cf4879e53dde7c515ec0dcbc068bd3fae3c13bb345a3
IEDL.DBID RSV
ISSN 0941-0643
IngestDate Wed Nov 05 04:18:35 EST 2025
Sat Nov 29 07:35:35 EST 2025
Tue Jul 22 01:11:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Stacked autoencoder
Attention mechanism
LSTM
Grip strength prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1879-98e94a52bb52940c50f43cf4879e53dde7c515ec0dcbc068bd3fae3c13bb345a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3231978224
PQPubID 2043988
PageCount 25
ParticipantIDs proquest_journals_3231978224
crossref_primary_10_1007_s00521_025_11337_9
springer_journals_10_1007_s00521_025_11337_9
PublicationCentury 2000
PublicationDate 20250700
2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 7
  year: 2025
  text: 20250700
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References AR Asif (11337_CR5) 2020
11337_CR33
AW Franzke (11337_CR6) 2019; 14
11337_CR31
M Montazerin (11337_CR12) 2023; 13
R Zhang (11337_CR14) 2023; 23
M Karrenbach (11337_CR4) 2022
11337_CR17
11337_CR15
11337_CR2
JP Vásconez (11337_CR11) 2023; 123
N Wang (11337_CR22) 2019; 47
G Zhang (11337_CR1) 2019; 20
A Sagheer (11337_CR28) 2019; 9
IJR Martinez (11337_CR34) 2020; 28
C Avian (11337_CR30) 2022; 71
O Kerdjidj (11337_CR10) 2023; 23
C Castellini (11337_CR16) 2009; 103
C Choi (11337_CR19) 2010; 32
B Xu (11337_CR25) 2022; 16
H Mao (11337_CR35) 2023; 79
H Su (11337_CR36) 2021; 2
11337_CR26
11337_CR23
ND Alotaibi (11337_CR32) 2023; 11
L Wang (11337_CR13) 2023; 86
B Dutra (11337_CR24) 2021; 70
H Cao (11337_CR20) 2017; 21
OP Idowu (11337_CR29) 2021; 206
G Hajian (11337_CR8) 2022; 71
L Xu (11337_CR21) 2018; 18
V Mendez (11337_CR7) 2021; 4
S Hochreiter (11337_CR27) 1997; 9
C Chen (11337_CR9) 2020; 20
X Xu (11337_CR3) 2023; 31
S Hua (11337_CR18) 2022; 8
References_xml – volume: 14
  start-page: 1
  issue: 8
  year: 2019
  ident: 11337_CR6
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0220899
– volume: 79
  year: 2023
  ident: 11337_CR35
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104088
– volume: 31
  start-page: 346
  year: 2023
  ident: 11337_CR3
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2022.3214866
– volume: 23
  start-page: 10054
  issue: 9
  year: 2023
  ident: 11337_CR10
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2023.3259150
– volume: 23
  start-page: 4940
  issue: 10
  year: 2023
  ident: 11337_CR14
  publication-title: Sensors
  doi: 10.3390/s23104940
– volume: 9
  start-page: 19038
  issue: 1
  year: 2019
  ident: 11337_CR28
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-55320-6
– volume: 71
  year: 2022
  ident: 11337_CR30
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103099
– volume: 2
  start-page: 404
  issue: 5
  year: 2021
  ident: 11337_CR36
  publication-title: IEEE Trans Artif Intell
  doi: 10.1109/TAI.2021.3066565
– volume: 70
  year: 2021
  ident: 11337_CR24
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103036
– volume: 8
  start-page: 1949
  issue: 3
  year: 2022
  ident: 11337_CR18
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-021-00338-5
– volume: 206
  year: 2021
  ident: 11337_CR29
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106121
– volume: 103
  start-page: 255
  issue: 3
  year: 2009
  ident: 11337_CR16
  publication-title: J Physiol Paris
  doi: 10.1016/j.jphysparis.2009.08.008
– volume: 4
  start-page: 595
  issue: 1
  year: 2021
  ident: 11337_CR7
  publication-title: Annual Rev Control Robot Auto Syst
  doi: 10.1146/annurev-control-071020-104336
– year: 2020
  ident: 11337_CR5
  publication-title: Sensors
  doi: 10.3390/s20061642
– volume: 86
  year: 2023
  ident: 11337_CR13
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105141
– volume: 21
  start-page: 491
  issue: 2
  year: 2017
  ident: 11337_CR20
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1800-8
– ident: 11337_CR31
  doi: 10.1145/3292500.3330701
– volume: 11
  start-page: 4004
  issue: 18
  year: 2023
  ident: 11337_CR32
  publication-title: Mathematics
  doi: 10.3390/math11184004
– volume: 18
  start-page: 3226
  issue: 10
  year: 2018
  ident: 11337_CR21
  publication-title: Sensors
  doi: 10.3390/s18103226
– volume: 20
  start-page: 3113
  issue: 6
  year: 2019
  ident: 11337_CR1
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2019.2956998
– year: 2022
  ident: 11337_CR4
  publication-title: Frontiers in Bioengineering and Biotechnology
  doi: 10.3389/fbioe.2022.1034672
– ident: 11337_CR23
  doi: 10.1088/1741-2552/ab673f
– volume: 123
  year: 2023
  ident: 11337_CR11
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106327
– volume: 47
  start-page: 393
  year: 2019
  ident: 11337_CR22
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.06.011
– ident: 11337_CR26
  doi: 10.1109/SISY56759.2022.10036305
– ident: 11337_CR17
  doi: 10.1016/j.neunet.2016.09.004
– volume: 16
  start-page: 1020086
  year: 2022
  ident: 11337_CR25
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2022.1020086
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 11337_CR27
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 11337_CR33
  doi: 10.1109/THMS.2023.3252817
– ident: 11337_CR15
  doi: 10.1109/TBME.2023.3234642
– volume: 28
  start-page: 2333
  issue: 10
  year: 2020
  ident: 11337_CR34
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2020.3022587
– volume: 13
  start-page: 11000
  issue: 1
  year: 2023
  ident: 11337_CR12
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-36490-w
– volume: 32
  start-page: 429
  issue: 5
  year: 2010
  ident: 11337_CR19
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2010.04.004
– volume: 20
  start-page: 4213
  issue: 15
  year: 2020
  ident: 11337_CR9
  publication-title: Sensors
  doi: 10.3390/s20154213
– volume: 71
  start-page: 1
  year: 2022
  ident: 11337_CR8
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2022.3189632
– ident: 11337_CR2
  doi: 10.3389/978-2-88966-616-4
SSID ssj0004685
Score 2.3845718
Snippet Despite decades of research in prosthetics and myocontrol, using electromyography (EMG) to accurately predict the force a user grasps an object with is still a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 16461
SubjectTerms Accuracy
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Electromyography
Grip strength
Image Processing and Computer Vision
Methods
Muscle function
Neural networks
Original Article
Pattern recognition systems
Probability and Statistics in Computer Science
Prostheses
Real time
Regression analysis
Sensors
Support vector machines
Time series
Title Evaluation of LSTM for predicting grip strength using electromyography: a comparison of setups and methods
URI https://link.springer.com/article/10.1007/s00521-025-11337-9
https://www.proquest.com/docview/3231978224
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2sNTEdhOzIdSKoVSIlqpb5FcKSKRVkyLx77FdJwUEA6xJdLLOvrvv4rv7ADhnSkRSRgqxKFCIEKoRl0GIAmzAB1FYM8dFMOpF_X48HrN73xSWl9Xu5ZWk89RVs5v9g2lS35CiwCRWEWLrYMOEu9ia48Ng9Kkb0hFxmrzF1vQQ7FtlfpbxNRytMOa3a1EXbbr1_61zB2x7dAmvl8dhF6zpbA_US-YG6A15H7x0qiHfcJrC3mB4Bw16hbO5vbexldBwYrwJtJ0k2aR4grY8fgI9Z87ru59zfQU5lBWRoZWU62IxyyHPFFxyU-cH4LHbGd7cIs-6gKRlHkcs1oxwGgpBQ0ZakrZSgmVqEhumKTbeMJIGA2nZUlLIVjsWCqdcYxlgITChHB-CWjbN9BGAEeNMGnwmaMqtJE6FyV60QXnmYVvhBrgolZ_MlsM1kmqMslNjYtSYODUmrAGa5f4k3tDyBBt8yizKIQ1wWe7H6vXv0o7_9vkJ2ArtlrpC3SaoFfOFPgWb8q14zudn7gB-AIR41aM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEL4omuiL-DOiqH3wTZtsa8uob8ZAMAIxgoS3pe061MRBGJj439uObajRB33dlktz1959t97dB3DOQ-kr5YeY-26IKWUaC-V62CUGfNCQaJ5yEQzafrdbHw75fdYUluTV7vmVZOqpi2Y3-wfTpL4ew65JrHzMV2GNmohlC_keeoNP3ZApEafJW2xNDyVZq8zPMr6GoyXG_HYtmkabZvl_69yGrQxdouvFdtiBFR3vQjlnbkDZQd6Dl0Yx5BuNI9Tu9TvIoFc0mdp7G1sJjUbGmyDbSRKPZk_IlsePUMaZ8_qezbm-QgKpgsjQSkr0bD5JkIhDtOCmTvbhsdno37RwxrqAlWUex7yuORXMk5J5nDqKORElKjKJDdeMGG_oK4OBtHJCJZVTq8uQREIT5RIpCWWCHEApHsf6EJDPBVcGn0kWCStJMGmyF21QnnlYC0kFLnLlB5PFcI2gGKOcqjEwagxSNQa8AtXcPkF20JKAGHzKLcqhFbjM7bF8_bu0o799fgYbrX6nHbRvu3fHsOlZ86ZFu1UozaZzfQLr6m32nExP0834AZFV2Ic
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58IV58i9Wqe_Cmi01213S9iVoUaylYi7ewr1QF09JEwX_vbl6togfxmoRhmdnHN9n55gM45FoGSgUa88DTmFJmsFCejz1iwQfVxPBMi6DfDjqd5uMj706x-LNq9_JKMuc0uC5NcXoy0tFJRXxzfzNtGuwz7NkkK8B8FuapEw1y-fp9f4oZmYly2hzG1fdQUtBmfrbx9Wia4M1vV6TZydNa-f-YV2G5QJ3oPJ8mazBj4nVYKRUdULHAN-Dlqmr-jYYRat_37pBFtWg0dvc5rkIaDewugxzDJB6kT8iVzQ9QoaXz-lH0vz5DAqlK4NBZSkz6NkqQiDXKNauTTXhoXfUurnGhxoCVUyTHvGk4FcyXkvmcNhRrRJSoyCY83DBid8lAWWxkVEMrqRqnTalJJAxRHpGSUCbIFszFw9hsAwq44MriNski4SwJJm1WYyz6sw9PNanBURmIcJQ33Qir9sqZG0PrxjBzY8hrUC9jFRYLMAmJxa3coR9ag-MyNpPXv1vb-dvnB7DYvWyF7ZvO7S4s-S66WS1vHebS8ZvZgwX1nj4n4_1sXn4CDW7haw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+LSTM+for+predicting+grip+strength+using+electromyography%3A+a+comparison+of+setups+and+methods&rft.jtitle=Neural+computing+%26+applications&rft.au=Anam%2C+Khairul&rft.au=Sudrajat%2C+Ahmad&rft.au=Rizal%2C+Naufal+Ainur&rft.au=Intyanto%2C+Gramandha+Wega&rft.date=2025-07-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=21&rft.spage=16461&rft.epage=16485&rft_id=info:doi/10.1007%2Fs00521-025-11337-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_025_11337_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon