Evaluation of LSTM for predicting grip strength using electromyography: a comparison of setups and methods
Despite decades of research in prosthetics and myocontrol, using electromyography (EMG) to accurately predict the force a user grasps an object with is still a subject of investigation. Although the problem seems trivial, the optimal EMG setup, able to deliver high prediction accuracy at a minimal e...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 37; číslo 21; s. 16461 - 16485 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.07.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Despite decades of research in prosthetics and myocontrol, using electromyography (EMG) to accurately predict the force a user grasps an object with is still a subject of investigation. Although the problem seems trivial, the optimal EMG setup, able to deliver high prediction accuracy at a minimal economic and computational cost needs to be found. In this work, we compare several EMG setups consisting of one to eight sensors and deep learning methods to find out which combination is most convenient. In particular, we compare long short-term memory (LSTM), together with a stacked autoencoder (LSTM–SAE) and an attention mechanism (LSTMATT). Our experimental results reveal that, while the best performance is attained by LSTM–SAE (coefficient of correlation
0.9867
±
0.0087
, coefficient of determination
0.9676
±
0.0489
, normalized root mean square error
0.048
±
0.0213
), statistically significant differences can only be found when the number of sensors is drastically reduced, namely to 2 sensors, in which case, anyway, the performance is still close to optimal and even surpasses state-of-the-art methods. Further research will focus on testing the optimal approach and setup online on amputated users using prosthetic hardware in daily living activities. |
|---|---|
| AbstractList | Despite decades of research in prosthetics and myocontrol, using electromyography (EMG) to accurately predict the force a user grasps an object with is still a subject of investigation. Although the problem seems trivial, the optimal EMG setup, able to deliver high prediction accuracy at a minimal economic and computational cost needs to be found. In this work, we compare several EMG setups consisting of one to eight sensors and deep learning methods to find out which combination is most convenient. In particular, we compare long short-term memory (LSTM), together with a stacked autoencoder (LSTM–SAE) and an attention mechanism (LSTMATT). Our experimental results reveal that, while the best performance is attained by LSTM–SAE (coefficient of correlation
0.9867
±
0.0087
, coefficient of determination
0.9676
±
0.0489
, normalized root mean square error
0.048
±
0.0213
), statistically significant differences can only be found when the number of sensors is drastically reduced, namely to 2 sensors, in which case, anyway, the performance is still close to optimal and even surpasses state-of-the-art methods. Further research will focus on testing the optimal approach and setup online on amputated users using prosthetic hardware in daily living activities. Despite decades of research in prosthetics and myocontrol, using electromyography (EMG) to accurately predict the force a user grasps an object with is still a subject of investigation. Although the problem seems trivial, the optimal EMG setup, able to deliver high prediction accuracy at a minimal economic and computational cost needs to be found. In this work, we compare several EMG setups consisting of one to eight sensors and deep learning methods to find out which combination is most convenient. In particular, we compare long short-term memory (LSTM), together with a stacked autoencoder (LSTM–SAE) and an attention mechanism (LSTMATT). Our experimental results reveal that, while the best performance is attained by LSTM–SAE (coefficient of correlation 0.9867±0.0087, coefficient of determination 0.9676±0.0489, normalized root mean square error 0.048±0.0213), statistically significant differences can only be found when the number of sensors is drastically reduced, namely to 2 sensors, in which case, anyway, the performance is still close to optimal and even surpasses state-of-the-art methods. Further research will focus on testing the optimal approach and setup online on amputated users using prosthetic hardware in daily living activities. |
| Author | Intyanto, Gramandha Wega Negara, Mohamad Agung Prawira Anam, Khairul Rizal, Naufal Ainur Muldayani, Wahyu Castellini, Claudio Sudrajat, Ahmad Gitakarma, Made Santo Sumardi Bukhori, Saiful |
| Author_xml | – sequence: 1 givenname: Khairul surname: Anam fullname: Anam, Khairul email: khairul@unej.ac.id organization: Department of Electrical Engineering, Universitas Jember, Intelligent Systems and Robotics Lab, CDAST, Universitas Jember – sequence: 2 givenname: Ahmad surname: Sudrajat fullname: Sudrajat, Ahmad organization: Department of Electrical Engineering, Universitas Jember, Intelligent Systems and Robotics Lab, CDAST, Universitas Jember – sequence: 3 givenname: Naufal Ainur surname: Rizal fullname: Rizal, Naufal Ainur organization: Department of Electrical Engineering, Universitas Jember, Intelligent Systems and Robotics Lab, CDAST, Universitas Jember – sequence: 4 givenname: Gramandha Wega surname: Intyanto fullname: Intyanto, Gramandha Wega organization: Department of Electrical Engineering, Universitas Jember, Intelligent Systems and Robotics Lab, CDAST, Universitas Jember – sequence: 5 givenname: Wahyu surname: Muldayani fullname: Muldayani, Wahyu organization: Department of Electrical Engineering, Universitas Jember, Intelligent Systems and Robotics Lab, CDAST, Universitas Jember – sequence: 6 givenname: Mohamad Agung Prawira surname: Negara fullname: Negara, Mohamad Agung Prawira organization: Department of Electrical Engineering, Universitas Jember, Intelligent Systems and Robotics Lab, CDAST, Universitas Jember – sequence: 7 surname: Sumardi fullname: Sumardi organization: Department of Electrical Engineering, Universitas Jember, Intelligent Systems and Robotics Lab, CDAST, Universitas Jember – sequence: 8 givenname: Saiful surname: Bukhori fullname: Bukhori, Saiful organization: Intelligent Systems and Robotics Lab, CDAST, Universitas Jember, Faculty of Computer Science, CDAST, Universitas Jember – sequence: 9 givenname: Made Santo surname: Gitakarma fullname: Gitakarma, Made Santo organization: Department of Electronic Systems Engineering Technology, Universitas Pendidikan Ganesha – sequence: 10 givenname: Claudio surname: Castellini fullname: Castellini, Claudio organization: Assistive Intelligent Robotics (AIROB) Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg |
| BookMark | eNp9kE1LwzAYx4NMcJt-AU8Bz9UkT7I23mTMF5h4cJ5DmqZdx5bUJBX27e2s4M3TA_-3B34zNHHeWYSuKbmlhOR3kRDBaEaYyCgFyDN5hqaUA2RARDFBUyL5YC84XKBZjDtCCF8UYop2qy-973VqvcO-xuv3zSuufcBdsFVrUusa3IS2wzEF65q0xX08aXZvTQr-cPRN0N32eI81Nv7Q6dDGcSna1HcRa1fhg01bX8VLdF7rfbRXv3eOPh5Xm-Vztn57elk-rDNDi1xmsrCSa8HKUjDJiRGk5mBqPnhWQFXZ3AgqrCGVKQ1ZFGUFtbZgKJQlcKFhjm7G3S74z97GpHa-D254qYABlXnBGB9SbEyZ4GMMtlZdaA86HBUl6sRUjUzVwFT9MFVyKMFYikPYNTb8Tf_T-gazSn0Y |
| Cites_doi | 10.1371/journal.pone.0220899 10.1016/j.bspc.2022.104088 10.1109/TNSRE.2022.3214866 10.1109/JSEN.2023.3259150 10.3390/s23104940 10.1038/s41598-019-55320-6 10.1016/j.bspc.2021.103099 10.1109/TAI.2021.3066565 10.1016/j.bspc.2021.103036 10.1007/s40747-021-00338-5 10.1016/j.cmpb.2021.106121 10.1016/j.jphysparis.2009.08.008 10.1146/annurev-control-071020-104336 10.3390/s20061642 10.1016/j.bspc.2023.105141 10.1007/s00500-015-1800-8 10.1145/3292500.3330701 10.3390/math11184004 10.3390/s18103226 10.1109/JSEN.2019.2956998 10.3389/fbioe.2022.1034672 10.1088/1741-2552/ab673f 10.1016/j.engappai.2023.106327 10.1016/j.bspc.2018.06.011 10.1109/SISY56759.2022.10036305 10.1016/j.neunet.2016.09.004 10.3389/fnins.2022.1020086 10.1162/neco.1997.9.8.1735 10.1109/THMS.2023.3252817 10.1109/TBME.2023.3234642 10.1109/TNSRE.2020.3022587 10.1038/s41598-023-36490-w 10.1016/j.medengphy.2010.04.004 10.3390/s20154213 10.1109/TIM.2022.3189632 10.3389/978-2-88966-616-4 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-025-11337-9 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 16485 |
| ExternalDocumentID | 10_1007_s00521_025_11337_9 |
| GrantInformation_xml | – fundername: Universitas Jember grantid: 7575/UN25.3.1/LT/2023 funderid: http://dx.doi.org/10.13039/501100018968 – fundername: Direktorat Jenderal Penguatan Riset dan Pengembangan grantid: 108/E/KPT/2023 funderid: http://dx.doi.org/10.13039/501100014952 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PQGLB PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX AFFHD CITATION |
| ID | FETCH-LOGICAL-c1879-98e94a52bb52940c50f43cf4879e53dde7c515ec0dcbc068bd3fae3c13bb345a3 |
| IEDL.DBID | RSV |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 04:18:35 EST 2025 Sat Nov 29 07:35:35 EST 2025 Tue Jul 22 01:11:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | Stacked autoencoder Attention mechanism LSTM Grip strength prediction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1879-98e94a52bb52940c50f43cf4879e53dde7c515ec0dcbc068bd3fae3c13bb345a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3231978224 |
| PQPubID | 2043988 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_3231978224 crossref_primary_10_1007_s00521_025_11337_9 springer_journals_10_1007_s00521_025_11337_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20250700 2025-07-00 20250701 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 7 year: 2025 text: 20250700 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | AR Asif (11337_CR5) 2020 11337_CR33 AW Franzke (11337_CR6) 2019; 14 11337_CR31 M Montazerin (11337_CR12) 2023; 13 R Zhang (11337_CR14) 2023; 23 M Karrenbach (11337_CR4) 2022 11337_CR17 11337_CR15 11337_CR2 JP Vásconez (11337_CR11) 2023; 123 N Wang (11337_CR22) 2019; 47 G Zhang (11337_CR1) 2019; 20 A Sagheer (11337_CR28) 2019; 9 IJR Martinez (11337_CR34) 2020; 28 C Avian (11337_CR30) 2022; 71 O Kerdjidj (11337_CR10) 2023; 23 C Castellini (11337_CR16) 2009; 103 C Choi (11337_CR19) 2010; 32 B Xu (11337_CR25) 2022; 16 H Mao (11337_CR35) 2023; 79 H Su (11337_CR36) 2021; 2 11337_CR26 11337_CR23 ND Alotaibi (11337_CR32) 2023; 11 L Wang (11337_CR13) 2023; 86 B Dutra (11337_CR24) 2021; 70 H Cao (11337_CR20) 2017; 21 OP Idowu (11337_CR29) 2021; 206 G Hajian (11337_CR8) 2022; 71 L Xu (11337_CR21) 2018; 18 V Mendez (11337_CR7) 2021; 4 S Hochreiter (11337_CR27) 1997; 9 C Chen (11337_CR9) 2020; 20 X Xu (11337_CR3) 2023; 31 S Hua (11337_CR18) 2022; 8 |
| References_xml | – volume: 14 start-page: 1 issue: 8 year: 2019 ident: 11337_CR6 publication-title: PLoS ONE doi: 10.1371/journal.pone.0220899 – volume: 79 year: 2023 ident: 11337_CR35 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104088 – volume: 31 start-page: 346 year: 2023 ident: 11337_CR3 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2022.3214866 – volume: 23 start-page: 10054 issue: 9 year: 2023 ident: 11337_CR10 publication-title: IEEE Sens J doi: 10.1109/JSEN.2023.3259150 – volume: 23 start-page: 4940 issue: 10 year: 2023 ident: 11337_CR14 publication-title: Sensors doi: 10.3390/s23104940 – volume: 9 start-page: 19038 issue: 1 year: 2019 ident: 11337_CR28 publication-title: Sci Rep doi: 10.1038/s41598-019-55320-6 – volume: 71 year: 2022 ident: 11337_CR30 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103099 – volume: 2 start-page: 404 issue: 5 year: 2021 ident: 11337_CR36 publication-title: IEEE Trans Artif Intell doi: 10.1109/TAI.2021.3066565 – volume: 70 year: 2021 ident: 11337_CR24 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103036 – volume: 8 start-page: 1949 issue: 3 year: 2022 ident: 11337_CR18 publication-title: Complex Intell Syst doi: 10.1007/s40747-021-00338-5 – volume: 206 year: 2021 ident: 11337_CR29 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106121 – volume: 103 start-page: 255 issue: 3 year: 2009 ident: 11337_CR16 publication-title: J Physiol Paris doi: 10.1016/j.jphysparis.2009.08.008 – volume: 4 start-page: 595 issue: 1 year: 2021 ident: 11337_CR7 publication-title: Annual Rev Control Robot Auto Syst doi: 10.1146/annurev-control-071020-104336 – year: 2020 ident: 11337_CR5 publication-title: Sensors doi: 10.3390/s20061642 – volume: 86 year: 2023 ident: 11337_CR13 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.105141 – volume: 21 start-page: 491 issue: 2 year: 2017 ident: 11337_CR20 publication-title: Soft Comput doi: 10.1007/s00500-015-1800-8 – ident: 11337_CR31 doi: 10.1145/3292500.3330701 – volume: 11 start-page: 4004 issue: 18 year: 2023 ident: 11337_CR32 publication-title: Mathematics doi: 10.3390/math11184004 – volume: 18 start-page: 3226 issue: 10 year: 2018 ident: 11337_CR21 publication-title: Sensors doi: 10.3390/s18103226 – volume: 20 start-page: 3113 issue: 6 year: 2019 ident: 11337_CR1 publication-title: IEEE Sens J doi: 10.1109/JSEN.2019.2956998 – year: 2022 ident: 11337_CR4 publication-title: Frontiers in Bioengineering and Biotechnology doi: 10.3389/fbioe.2022.1034672 – ident: 11337_CR23 doi: 10.1088/1741-2552/ab673f – volume: 123 year: 2023 ident: 11337_CR11 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.106327 – volume: 47 start-page: 393 year: 2019 ident: 11337_CR22 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2018.06.011 – ident: 11337_CR26 doi: 10.1109/SISY56759.2022.10036305 – ident: 11337_CR17 doi: 10.1016/j.neunet.2016.09.004 – volume: 16 start-page: 1020086 year: 2022 ident: 11337_CR25 publication-title: Front Neurosci doi: 10.3389/fnins.2022.1020086 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 11337_CR27 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – ident: 11337_CR33 doi: 10.1109/THMS.2023.3252817 – ident: 11337_CR15 doi: 10.1109/TBME.2023.3234642 – volume: 28 start-page: 2333 issue: 10 year: 2020 ident: 11337_CR34 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2020.3022587 – volume: 13 start-page: 11000 issue: 1 year: 2023 ident: 11337_CR12 publication-title: Sci Rep doi: 10.1038/s41598-023-36490-w – volume: 32 start-page: 429 issue: 5 year: 2010 ident: 11337_CR19 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2010.04.004 – volume: 20 start-page: 4213 issue: 15 year: 2020 ident: 11337_CR9 publication-title: Sensors doi: 10.3390/s20154213 – volume: 71 start-page: 1 year: 2022 ident: 11337_CR8 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2022.3189632 – ident: 11337_CR2 doi: 10.3389/978-2-88966-616-4 |
| SSID | ssj0004685 |
| Score | 2.3845718 |
| Snippet | Despite decades of research in prosthetics and myocontrol, using electromyography (EMG) to accurately predict the force a user grasps an object with is still a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 16461 |
| SubjectTerms | Accuracy Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Deep learning Electromyography Grip strength Image Processing and Computer Vision Methods Muscle function Neural networks Original Article Pattern recognition systems Probability and Statistics in Computer Science Prostheses Real time Regression analysis Sensors Support vector machines Time series |
| Title | Evaluation of LSTM for predicting grip strength using electromyography: a comparison of setups and methods |
| URI | https://link.springer.com/article/10.1007/s00521-025-11337-9 https://www.proquest.com/docview/3231978224 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2sNTEdhOzIdSKoVSIlqpb5FcKSKRVkyLx77FdJwUEA6xJdLLOvrvv4rv7ADhnSkRSRgqxKFCIEKoRl0GIAmzAB1FYM8dFMOpF_X48HrN73xSWl9Xu5ZWk89RVs5v9g2lS35CiwCRWEWLrYMOEu9ia48Ng9Kkb0hFxmrzF1vQQ7FtlfpbxNRytMOa3a1EXbbr1_61zB2x7dAmvl8dhF6zpbA_US-YG6A15H7x0qiHfcJrC3mB4Bw16hbO5vbexldBwYrwJtJ0k2aR4grY8fgI9Z87ru59zfQU5lBWRoZWU62IxyyHPFFxyU-cH4LHbGd7cIs-6gKRlHkcs1oxwGgpBQ0ZakrZSgmVqEhumKTbeMJIGA2nZUlLIVjsWCqdcYxlgITChHB-CWjbN9BGAEeNMGnwmaMqtJE6FyV60QXnmYVvhBrgolZ_MlsM1kmqMslNjYtSYODUmrAGa5f4k3tDyBBt8yizKIQ1wWe7H6vXv0o7_9vkJ2ArtlrpC3SaoFfOFPgWb8q14zudn7gB-AIR41aM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEL4omuiL-DOiqH3wTZtsa8uob8ZAMAIxgoS3pe061MRBGJj439uObajRB33dlktz1959t97dB3DOQ-kr5YeY-26IKWUaC-V62CUGfNCQaJ5yEQzafrdbHw75fdYUluTV7vmVZOqpi2Y3-wfTpL4ew65JrHzMV2GNmohlC_keeoNP3ZApEafJW2xNDyVZq8zPMr6GoyXG_HYtmkabZvl_69yGrQxdouvFdtiBFR3vQjlnbkDZQd6Dl0Yx5BuNI9Tu9TvIoFc0mdp7G1sJjUbGmyDbSRKPZk_IlsePUMaZ8_qezbm-QgKpgsjQSkr0bD5JkIhDtOCmTvbhsdno37RwxrqAlWUex7yuORXMk5J5nDqKORElKjKJDdeMGG_oK4OBtHJCJZVTq8uQREIT5RIpCWWCHEApHsf6EJDPBVcGn0kWCStJMGmyF21QnnlYC0kFLnLlB5PFcI2gGKOcqjEwagxSNQa8AtXcPkF20JKAGHzKLcqhFbjM7bF8_bu0o799fgYbrX6nHbRvu3fHsOlZ86ZFu1UozaZzfQLr6m32nExP0834AZFV2Ic |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58IV58i9Wqe_Cmi01213S9iVoUaylYi7ewr1QF09JEwX_vbl6togfxmoRhmdnHN9n55gM45FoGSgUa88DTmFJmsFCejz1iwQfVxPBMi6DfDjqd5uMj706x-LNq9_JKMuc0uC5NcXoy0tFJRXxzfzNtGuwz7NkkK8B8FuapEw1y-fp9f4oZmYly2hzG1fdQUtBmfrbx9Wia4M1vV6TZydNa-f-YV2G5QJ3oPJ8mazBj4nVYKRUdULHAN-Dlqmr-jYYRat_37pBFtWg0dvc5rkIaDewugxzDJB6kT8iVzQ9QoaXz-lH0vz5DAqlK4NBZSkz6NkqQiDXKNauTTXhoXfUurnGhxoCVUyTHvGk4FcyXkvmcNhRrRJSoyCY83DBid8lAWWxkVEMrqRqnTalJJAxRHpGSUCbIFszFw9hsAwq44MriNski4SwJJm1WYyz6sw9PNanBURmIcJQ33Qir9sqZG0PrxjBzY8hrUC9jFRYLMAmJxa3coR9ag-MyNpPXv1vb-dvnB7DYvWyF7ZvO7S4s-S66WS1vHebS8ZvZgwX1nj4n4_1sXn4CDW7haw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+LSTM+for+predicting+grip+strength+using+electromyography%3A+a+comparison+of+setups+and+methods&rft.jtitle=Neural+computing+%26+applications&rft.au=Anam%2C+Khairul&rft.au=Sudrajat%2C+Ahmad&rft.au=Rizal%2C+Naufal+Ainur&rft.au=Intyanto%2C+Gramandha+Wega&rft.date=2025-07-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=21&rft.spage=16461&rft.epage=16485&rft_id=info:doi/10.1007%2Fs00521-025-11337-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_025_11337_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |