Ultra-high performance concrete compressive strength prediction using machine learning boosting algorithms

Concrete with Ultra-High Performance (UHPC) is a next-generation cement-based material known for its ultra-high compressive strength, enhanced ductility, and extreme durability. By eliminating coarse aggregates and incorporating optimized fine particle packing, UHPC achieves strengths above 150 MPa....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asian journal of civil engineering. Building and housing Jg. 26; H. 12; S. 5139 - 5154
Hauptverfasser: Brahmeswari, L. Chandana, Rao, B. D. V. Chandra Mohan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.12.2025
Springer Nature B.V
Schlagworte:
ISSN:1563-0854, 2522-011X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Concrete with Ultra-High Performance (UHPC) is a next-generation cement-based material known for its ultra-high compressive strength, enhanced ductility, and extreme durability. By eliminating coarse aggregates and incorporating optimized fine particle packing, UHPC achieves strengths above 150 MPa. The synergy of low water-to-binder ratio, high-reactivity pozzolans like silica fume, and steel fiber reinforcement contributes to its exceptional mechanical and durability performance. UHPC offers self-consolidation, reduced permeability, and superior resistance to aggressive environments, making it ideal for critical infrastructure. Its ability to outperform traditional concrete in both structural and service life applications is transforming the future of construction. This study examines how well two sophisticated machine learning boosting models, Gradient Boosting algorithm (GB) and Extreme Gradient Boosting algorithm (XGBoost) performs while predicting the ultra-high performance concrete’s compressive strength. To evaluate this potential, a dataset consisting of 110 experimental results, compiled from existing literature, was employed to test and train the models. The GB model achieved a R² of 0.960 and Normalized Mean Square Error, NMSE of 0.041 on the train data and R² of 0.727 and NMSE of 0.452 on test data. The XGBoost model achieved a R² of 0.961 and NMSE of 0.039 on the train data and R² of 0.840 and NMSE of 0.160 on test data. These results demonstrate that XGBoost and GB, both have excellent predictive accuracy in modeling UHPC compressive strength and shown a significant improvement over the existing literature, Omar R. Abuodeh (2020). Overall, this research confirms that leveraging GB and XGBoost significantly enhances model performance and offers valuable insights into the compressive strength behavior of UHPC.
AbstractList Concrete with Ultra-High Performance (UHPC) is a next-generation cement-based material known for its ultra-high compressive strength, enhanced ductility, and extreme durability. By eliminating coarse aggregates and incorporating optimized fine particle packing, UHPC achieves strengths above 150 MPa. The synergy of low water-to-binder ratio, high-reactivity pozzolans like silica fume, and steel fiber reinforcement contributes to its exceptional mechanical and durability performance. UHPC offers self-consolidation, reduced permeability, and superior resistance to aggressive environments, making it ideal for critical infrastructure. Its ability to outperform traditional concrete in both structural and service life applications is transforming the future of construction. This study examines how well two sophisticated machine learning boosting models, Gradient Boosting algorithm (GB) and Extreme Gradient Boosting algorithm (XGBoost) performs while predicting the ultra-high performance concrete’s compressive strength. To evaluate this potential, a dataset consisting of 110 experimental results, compiled from existing literature, was employed to test and train the models. The GB model achieved a R² of 0.960 and Normalized Mean Square Error, NMSE of 0.041 on the train data and R² of 0.727 and NMSE of 0.452 on test data. The XGBoost model achieved a R² of 0.961 and NMSE of 0.039 on the train data and R² of 0.840 and NMSE of 0.160 on test data. These results demonstrate that XGBoost and GB, both have excellent predictive accuracy in modeling UHPC compressive strength and shown a significant improvement over the existing literature, Omar R. Abuodeh (2020). Overall, this research confirms that leveraging GB and XGBoost significantly enhances model performance and offers valuable insights into the compressive strength behavior of UHPC.
Concrete with Ultra-High Performance (UHPC) is a next-generation cement-based material known for its ultra-high compressive strength, enhanced ductility, and extreme durability. By eliminating coarse aggregates and incorporating optimized fine particle packing, UHPC achieves strengths above 150 MPa. The synergy of low water-to-binder ratio, high-reactivity pozzolans like silica fume, and steel fiber reinforcement contributes to its exceptional mechanical and durability performance. UHPC offers self-consolidation, reduced permeability, and superior resistance to aggressive environments, making it ideal for critical infrastructure. Its ability to outperform traditional concrete in both structural and service life applications is transforming the future of construction. This study examines how well two sophisticated machine learning boosting models, Gradient Boosting algorithm (GB) and Extreme Gradient Boosting algorithm (XGBoost) performs while predicting the ultra-high performance concrete’s compressive strength. To evaluate this potential, a dataset consisting of 110 experimental results, compiled from existing literature, was employed to test and train the models. The GB model achieved a R² of 0.960 and Normalized Mean Square Error, NMSE of 0.041 on the train data and R² of 0.727 and NMSE of 0.452 on test data. The XGBoost model achieved a R² of 0.961 and NMSE of 0.039 on the train data and R² of 0.840 and NMSE of 0.160 on test data. These results demonstrate that XGBoost and GB, both have excellent predictive accuracy in modeling UHPC compressive strength and shown a significant improvement over the existing literature, Omar R. Abuodeh (2020). Overall, this research confirms that leveraging GB and XGBoost significantly enhances model performance and offers valuable insights into the compressive strength behavior of UHPC.
Author Brahmeswari, L. Chandana
Rao, B. D. V. Chandra Mohan
Author_xml – sequence: 1
  givenname: L. Chandana
  surname: Brahmeswari
  fullname: Brahmeswari, L. Chandana
  organization: Department of Civil Engineering, VNR Vignana Jyothi Institute of Engineering and Technology
– sequence: 2
  givenname: B. D. V. Chandra Mohan
  surname: Rao
  fullname: Rao, B. D. V. Chandra Mohan
  email: bdvcmrao@gmail.com
  organization: Department of Civil Engineering, VNR Vignana Jyothi Institute of Engineering and Technology
BookMark eNp9kE1LxDAQhoOs4LruH_BU8BydpG3SHmXxCxa8uOAtpO30Y2mTmnQF_72pFbx5mS_eZ2Z4L8nKWIOEXDO4ZQDyziecgaTAUwoskYJmZ2TNU85Dy95XZM1SEVPI0uSCbL3vCghAIFiyJsdDPzlN265poxFdbd2gTYlRaU3pcJqLYXQYqE-M_OTQNFNQOqy6cuqsiU6-M0006LLtDEY9amfmQWGtn-ZC94113dQO_oqc17r3uP3NG3J4fHjbPdP969PL7n5PS5bJjGpWg6ykFmkV3pcCtYaUpZoJlHmcFgLzqsKkjotcgyxjXgnICwBRQ1zzEDbkZtk7OvtxQj-poz05E06qmAvBsiwHHlR8UZXOeu-wVqPrBu2-FAM126oWW1WwVf3YqrIAxQvkg9g06P5W_0N9Az2bfo4
Cites_doi 10.1007/s42107-025-01277-z
10.1016/j.conbuildmat.2017.11.049
10.3311/PPci.18901
10.1007/s41939-025-00737-y
10.1016/j.conbuildmat.2018.05.201
10.1007/s42107-024-01151-4
10.1016/j.istruc.2023.03.178
10.1016/j.conbuildmat.2017.07.158
10.1016/j.conbuildmat.2017.03.091
10.1007/s42107-024-01142-5
10.1016/j.cemconcomp.2007.04.009
10.1007/s42107-024-01195-6
10.1016/j.conbuildmat.2018.06.219
10.1016/j.asoc.2020.106552
10.1007/s42107-023-00836-6
10.1016/j.conbuildmat.2017.06.156
10.1016/j.conbuildmat.2012.04.030
10.1016/j.conbuildmat.2011.12.008
10.1533/9780857099891.61
10.1016/j.conbuildmat.2017.03.185
10.14359/18577
10.1007/s42107-023-00689-z
10.28991/cej-03091216
10.1002/suco.70178
10.1016/j.engstruct.2004.01.009
10.1016/j.cemconres.2006.03.009
10.7763/IJMO.2017.V7.557
10.1061/(ASCE)MT.1943-5533.000098
10.1007/s42107-025-01386-9
10.1007/s42107-023-00778-z
10.1007/s42107-024-01213-7
10.3311/PPci.10799
10.1007/s42107-023-00984-9
10.22068/ijoce.2023.13.4.566
10.1007/s42107-023-00807-x
10.1061/(ASCE)MT.1943-5533.0002144
10.1007/s42107-024-01183-w
10.1061/(ASCE)0887-3801
10.1016/j.conbuildmat.2017.08.170
10.1016/S0045-7949(01)00083-9
10.1016/j.conbuildmat.2005.01.047
10.1007/978-3-031-66051-1
10.1016/j.conbuildmat.2015.03.087
10.1016/S0045-7949(02)00451-0
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
DBID AAYXX
CITATION
DOI 10.1007/s42107-025-01476-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2522-011X
EndPage 5154
ExternalDocumentID 10_1007_s42107_025_01476_8
GroupedDBID 0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIAKS
AIGIU
AILAN
AITGF
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ATHPR
AXYYD
AYFIA
BGNMA
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
P2P
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
CITATION
ID FETCH-LOGICAL-c1878-a1f07d7a65d01176eaa0515a16e7935b6e9dde4f3b9a07c32d609b006f03f2f03
IEDL.DBID RSV
ISSN 1563-0854
IngestDate Sat Nov 01 14:52:22 EDT 2025
Sat Nov 29 07:02:28 EST 2025
Wed Oct 29 01:26:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords score
R
Normalized mean square error (NMSE)
Gradient boosting algorithm (GB)
Ultra-high performance concrete (UHPC)
Compressive strength
Extreme gradient boosting algorithm (XGBoost)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1878-a1f07d7a65d01176eaa0515a16e7935b6e9dde4f3b9a07c32d609b006f03f2f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3266188902
PQPubID 7433668
PageCount 16
ParticipantIDs proquest_journals_3266188902
crossref_primary_10_1007_s42107_025_01476_8
springer_journals_10_1007_s42107_025_01476_8
PublicationCentury 2000
PublicationDate 20251200
2025-12-00
20251201
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 20251200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle Building and Housing
PublicationTitle Asian journal of civil engineering. Building and housing
PublicationTitleAbbrev Asian J Civ Eng
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References A Alsalman (1476_CR5) 2017; 153
1476_CR23
A Kaveh (1476_CR27) 2022; 66
BB Adhikary (1476_CR3) 2006; 20
Y Yua (1476_CR44) 2018; 184
A Kaveh (1476_CR24) 2023; 52
Z Waszczyszyn (1476_CR42) 2001; 79
SSA Kumar (1476_CR30) 2025; 26
SR Wani (1476_CR41) 2025; 26
JA Abdalla (1476_CR1) 2007; 334
T Bansal (1476_CR8) 2024; 25
F Alsharari (1476_CR6) 2025; 26
M Hassan (1476_CR18) 2017; 144
MG Sohail (1476_CR36) 2018; 30
K Habel (1476_CR15) 2006; 36
OR Abuodeh (1476_CR2) 2020; 95
K Wille (1476_CR43) 2015; 86
HM Tanarslan (1476_CR38) 2012; 30
M Shafieifar (1476_CR35) 2017; 156
SC Sapkota (1476_CR33) 2025; 160
C George (1476_CR10) 2025; 26
1476_CR11
BA Graybeal (1476_CR13) 2007; 104
M Alkaysi (1476_CR4) 2017; 144
A Kaveh (1476_CR26) 2017; 7
J Kasperkiewicz (1476_CR22) 1995; 9
G Tayfur (1476_CR39) 2014; 26
MN Hadi (1476_CR16) 2003; 81
AW Oreta (1476_CR32) 2004; 26
A Satyanarayana (1476_CR34) 2024; 25
RK Tipu (1476_CR40) 2023; 24
P Kumar (1476_CR28) 2024; 25
DK Bui (1476_CR9) 2018; 180
CTG Awodiji (1476_CR7) 2018; 4
N Islam (1476_CR20) 2024; 25
DL Nguyen (1476_CR31) 2024; 25
M Gupta (1476_CR14) 2024; 25
A Kaveh (1476_CR25) 2018; 62
R Zhong (1476_CR45) 2018; 160
AMT Hassan (1476_CR17) 2012; 37
M Ghrici (1476_CR12) 2017; 109
P Hosseini (1476_CR19) 2023; 13
HO Jang (1476_CR21) 2017; 152
SH Subramanya (1476_CR37) 2025; 26
R Kumar (1476_CR29) 2025; 2025
References_xml – volume: 26
  start-page: 1683
  year: 2025
  ident: 1476_CR30
  publication-title: Asian Journal of Civil Engineering
  doi: 10.1007/s42107-025-01277-z
– volume: 160
  start-page: 505
  year: 2018
  ident: 1476_CR45
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2017.11.049
– volume: 66
  start-page: 18
  issue: 1
  year: 2022
  ident: 1476_CR27
  publication-title: Periodica Polytechnica Civil Engineering
  doi: 10.3311/PPci.18901
– volume: 160
  start-page: 1
  year: 2025
  ident: 1476_CR33
  publication-title: Multiscale and Multidisciplinary Modeling Experiments and Design
  doi: 10.1007/s41939-025-00737-y
– volume: 334
  start-page: 741
  issue: 5
  year: 2007
  ident: 1476_CR1
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.conbuildmat.2018.05.201
– volume: 25
  start-page: 5865
  year: 2024
  ident: 1476_CR34
  publication-title: Asian Journal of Civil Engineering
  doi: 10.1007/s42107-024-01151-4
– volume: 52
  start-page: 256
  year: 2023
  ident: 1476_CR24
  publication-title: Structures
  doi: 10.1016/j.istruc.2023.03.178
– volume: 153
  start-page: 918
  year: 2017
  ident: 1476_CR5
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2017.07.158
– volume: 144
  start-page: 412
  year: 2017
  ident: 1476_CR4
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2017.03.091
– volume: 25
  start-page: 5741
  year: 2024
  ident: 1476_CR14
  publication-title: Asian Journal of Civil Engineering
  doi: 10.1007/s42107-024-01142-5
– volume: 109
  start-page: 542
  year: 2017
  ident: 1476_CR12
  publication-title: Cement and Concrete Composites
  doi: 10.1016/j.cemconcomp.2007.04.009
– volume: 26
  start-page: 373
  year: 2025
  ident: 1476_CR41
  publication-title: Asian Journal of Civil Engineering
  doi: 10.1007/s42107-024-01195-6
– volume: 184
  start-page: 229
  year: 2018
  ident: 1476_CR44
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2018.06.219
– volume: 95
  start-page: 106552
  year: 2020
  ident: 1476_CR2
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106552
– volume: 25
  start-page: 1195
  year: 2024
  ident: 1476_CR8
  publication-title: Asian Journal of Civil Engineering
  doi: 10.1007/s42107-023-00836-6
– volume: 152
  start-page: 16
  year: 2017
  ident: 1476_CR21
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2017.06.156
– volume: 37
  start-page: 874
  year: 2012
  ident: 1476_CR17
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2012.04.030
– volume: 30
  start-page: 556
  year: 2012
  ident: 1476_CR38
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2011.12.008
– ident: 1476_CR11
  doi: 10.1533/9780857099891.61
– volume: 144
  start-page: 747
  year: 2017
  ident: 1476_CR18
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2017.03.185
– volume: 104
  start-page: 146
  year: 2007
  ident: 1476_CR13
  publication-title: ACI Materials Journal
  doi: 10.14359/18577
– volume: 24
  start-page: 2985
  year: 2023
  ident: 1476_CR40
  publication-title: Asian Journal of Civil Engineering
  doi: 10.1007/s42107-023-00689-z
– volume: 180
  start-page: 320
  year: 2018
  ident: 1476_CR9
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2018.05.201
– volume: 4
  start-page: 3005
  issue: 12
  year: 2018
  ident: 1476_CR7
  publication-title: Civil Engineering Journal
  doi: 10.28991/cej-03091216
– volume: 2025
  start-page: 1
  year: 2025
  ident: 1476_CR29
  publication-title: Structural Concrete
  doi: 10.1002/suco.70178
– volume: 26
  start-page: 681
  issue: 5
  year: 2004
  ident: 1476_CR32
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2004.01.009
– volume: 36
  start-page: 1362
  year: 2006
  ident: 1476_CR15
  publication-title: Cement and Concrete Research
  doi: 10.1016/j.cemconres.2006.03.009
– volume: 7
  start-page: 48
  issue: 1
  year: 2017
  ident: 1476_CR26
  publication-title: International Journal of Modeling and Optimization
  doi: 10.7763/IJMO.2017.V7.557
– volume: 26
  start-page: 04014079
  issue: 11
  year: 2014
  ident: 1476_CR39
  publication-title: Journal of Materials in Civil Engineering
  doi: 10.1061/(ASCE)MT.1943-5533.000098
– volume: 26
  start-page: 3533
  year: 2025
  ident: 1476_CR37
  publication-title: Asian Journal of Civil Engineering
  doi: 10.1007/s42107-025-01386-9
– volume: 25
  start-page: 327
  year: 2024
  ident: 1476_CR20
  publication-title: Asian Journal of Civil Engineering
  doi: 10.1007/s42107-023-00778-z
– volume: 26
  start-page: 667
  year: 2025
  ident: 1476_CR10
  publication-title: Asian Journal of Civil Engineering
  doi: 10.1007/s42107-024-01213-7
– volume: 62
  start-page: 281
  issue: 2
  year: 2018
  ident: 1476_CR25
  publication-title: Periodica Polytechnica Civil Engineering
  doi: 10.3311/PPci.10799
– volume: 25
  start-page: 3363
  year: 2024
  ident: 1476_CR31
  publication-title: Asian Journal of Civil Engineering
  doi: 10.1007/s42107-023-00984-9
– volume: 13
  start-page: 457
  issue: 4
  year: 2023
  ident: 1476_CR19
  publication-title: International Journal of Optimization in Civil Engineering
  doi: 10.22068/ijoce.2023.13.4.566
– volume: 25
  start-page: 723
  year: 2024
  ident: 1476_CR28
  publication-title: Asian Journal of Civil Engineering
  doi: 10.1007/s42107-023-00807-x
– volume: 30
  start-page: 1
  issue: 4
  year: 2018
  ident: 1476_CR36
  publication-title: Journal of Materials in Civil Engineering
  doi: 10.1061/(ASCE)MT.1943-5533.0002144
– volume: 26
  start-page: 179
  year: 2025
  ident: 1476_CR6
  publication-title: Asian Journal of Civil Engineering
  doi: 10.1007/s42107-024-01183-w
– volume: 9
  start-page: 279
  issue: 4
  year: 1995
  ident: 1476_CR22
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)0887-3801
– volume: 156
  start-page: 402
  year: 2017
  ident: 1476_CR35
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2017.08.170
– volume: 79
  start-page: 2261
  year: 2001
  ident: 1476_CR42
  publication-title: Computers & Structures
  doi: 10.1016/S0045-7949(01)00083-9
– volume: 20
  start-page: 801
  year: 2006
  ident: 1476_CR3
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2005.01.047
– ident: 1476_CR23
  doi: 10.1007/978-3-031-66051-1
– volume: 86
  start-page: 33
  year: 2015
  ident: 1476_CR43
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2015.03.087
– volume: 81
  start-page: 373
  issue: 6
  year: 2003
  ident: 1476_CR16
  publication-title: Computers & Structures
  doi: 10.1016/S0045-7949(02)00451-0
SSID ssib042110714
ssj0003009064
ssib008502629
Score 2.3353672
Snippet Concrete with Ultra-High Performance (UHPC) is a next-generation cement-based material known for its ultra-high compressive strength, enhanced ductility, and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 5139
SubjectTerms Accuracy
Algorithms
Building Materials
Cement
Civil Engineering
Compressive strength
Concrete
Concrete properties
Critical infrastructure
Datasets
Deep learning
Ductility
Durability
Engineering
Fiber reinforcement
Fuzzy logic
Machine learning
Neural networks
Pozzolans
Reinforced concrete
Service life
Shear strength
Silica fume
Steel fibers
Sustainable Architecture/Green Buildings
Tensile strength
Ultra high performance concrete
Title Ultra-high performance concrete compressive strength prediction using machine learning boosting algorithms
URI https://link.springer.com/article/10.1007/s42107-025-01476-8
https://www.proquest.com/docview/3266188902
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2522-011X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003009064
  issn: 1563-0854
  databaseCode: RSV
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWHLzsJ0RISoGVCGgqFtkO05p1ZeS0N_P2U0aQDDAEkWKlSh3tu873913CF0y7XOhRZuEiT26UdIjkVGK0DThkVQSIIBj13_g3a7o96PHsigsr7Ldq5Ck26lXxW4BeCec2ParAOs5I2IdbYC5E3Y5Pj2_rmaRCMGvqI1-4FycMlY4cj4AjajjlQLfxScwPiiraX7-zFeLVcPQb5FTZ5A6u__7lT20UwJQfLOcMftozUwP0PYnWsJDNOqNi0wSy2SM53VhAQbXGTBmYW8my_zZhcG22GQ6KGBkZmM-Vs_YJtMP8MTlaRpcNqYYYAD0uc2yxnI8mGXD4m2SH6Fe5-7l9p6UPRmIbgtwOGU7pTzhkoWJZZNjRkrbJQZ0amClh4qZCDbMIPVVJCnXvpcwamkXWUr91IPLMWpMZ1NzgrAIlaJMUyWpCgQzIjE60SGXgCA1j9pNdFXJPZ4vqTfiFcmyk2AMEoydBGPRRK1KNXG5DPPYt_BD2FBqE11Xqqgf__62078NP0NbntWmS3NpoUaRvZtztKkXxTDPLtz0_ADfed1m
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4ScCBN2I8c-AGkbK1TdIjQiAQY0K8xK1K0nQMsYHawu_HydoNEBzgUlVt1Kq2k3yu7c8A-9wEQhrZpFHqft1o1aKx1ZqyLBWx0gohgGfXb4tORz48xFdVUVhRZ7vXIUm_Uo-K3UL0TgR17VcR1gtO5SRM47XIJfJd39yPrEhG6FeMN_3QuzhVrPDJ-wAsZp5XCn2XgOL4sKqm-fk1X3esMQz9Fjn1G9Lp4v8-ZQkWKgBKjoYWswwTdrAC859oCVfh6e65zBV1TMbkdVxYQNB1RoxZupP-MH_23RJXbDLoljgydzEfp2fikum7pO_zNC2pGlN0CQL6wmVZE_Xcfcl75WO_WIO705Pb4zNa9WSgpinR4VTNjIlUKB6ljk2OW6VclxjUqcWZHmluY1wwwyzQsWLCBK2UM0e7yDMWZC08rMPU4GVgN4DISGvGDdOK6VByK1NrUhMJhQjSiLjZgINa7snrkHojGZEsewkmKMHESzCRDdiuVZNU07BIAgc_pAulNuCwVsX49u9P2_zb8D2YPbu9bCft887FFsy1nGZ9yss2TJX5m92BGfNe9op815vqB0kF4Eo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4NNiF42MYvUcaYH3gDC7dJbOcRsVWbqKpK_BBvke04BURDlQb-fu7ctGVoPEy8RJFixYrPsb_Pd_cdwIF0kdJOt3mS09GNNR2eemu5KHKVGmsQAgR1_Z7q9_X1dTp4kcUfot1nLslpTgOpNJX18TgvjueJbzEyFcWpFCtCfCW5XoKPMRUNIr5-fjWfUTpBjrEAAHGgO43f8C7wAZGKoDGFPCbi2D5uMmv-3c3fu9cCkr7yoobNqfvl_Z_1FT43wJSdTGfSOnzw5QasvZAr3IS7y_u6MpwUjtl4kXDAsBPEnjXdjKZxtU-eURJKOayxZUW-ILI_oyD7IRuF-E3PmoIVQ4ZAf0LR18zcDx-q2_pmNNmCy-6vi9PfvKnVwF1bIxE17UKoXBmZ5KQyJ70xVD0Gbe1xBUis9CkupHER2dQI5aJOLgXJMcpCREUHL9uwXD6UfgeYTqwV0glrhI219Dr3LneJMogsnUrbLTic2SAbTyU5srn4chjBDEcwCyOY6RbszcyUNb_nJIsIlmhysbbgaGaWxeO337b7f81_wMrgZzfr_emffYPVDhk2RMLswXJdPfrv8Mk91beTaj_M2meXtuku
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-high+performance+concrete+compressive+strength+prediction+using+machine+learning+boosting+algorithms&rft.jtitle=Asian+journal+of+civil+engineering.+Building+and+housing&rft.au=Brahmeswari%2C+L.+Chandana&rft.au=Rao%2C+B.+D.+V.+Chandra+Mohan&rft.date=2025-12-01&rft.pub=Springer+International+Publishing&rft.issn=1563-0854&rft.eissn=2522-011X&rft.volume=26&rft.issue=12&rft.spage=5139&rft.epage=5154&rft_id=info:doi/10.1007%2Fs42107-025-01476-8&rft.externalDocID=10_1007_s42107_025_01476_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1563-0854&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1563-0854&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1563-0854&client=summon