Ultra-high performance concrete compressive strength prediction using machine learning boosting algorithms
Concrete with Ultra-High Performance (UHPC) is a next-generation cement-based material known for its ultra-high compressive strength, enhanced ductility, and extreme durability. By eliminating coarse aggregates and incorporating optimized fine particle packing, UHPC achieves strengths above 150 MPa....
Uloženo v:
| Vydáno v: | Asian journal of civil engineering. Building and housing Ročník 26; číslo 12; s. 5139 - 5154 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1563-0854, 2522-011X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Concrete with Ultra-High Performance (UHPC) is a next-generation cement-based material known for its ultra-high compressive strength, enhanced ductility, and extreme durability. By eliminating coarse aggregates and incorporating optimized fine particle packing, UHPC achieves strengths above 150 MPa. The synergy of low water-to-binder ratio, high-reactivity pozzolans like silica fume, and steel fiber reinforcement contributes to its exceptional mechanical and durability performance. UHPC offers self-consolidation, reduced permeability, and superior resistance to aggressive environments, making it ideal for critical infrastructure. Its ability to outperform traditional concrete in both structural and service life applications is transforming the future of construction. This study examines how well two sophisticated machine learning boosting models, Gradient Boosting algorithm (GB) and Extreme Gradient Boosting algorithm (XGBoost) performs while predicting the ultra-high performance concrete’s compressive strength. To evaluate this potential, a dataset consisting of 110 experimental results, compiled from existing literature, was employed to test and train the models. The GB model achieved a R² of 0.960 and Normalized Mean Square Error, NMSE of 0.041 on the train data and R² of 0.727 and NMSE of 0.452 on test data. The XGBoost model achieved a R² of 0.961 and NMSE of 0.039 on the train data and R² of 0.840 and NMSE of 0.160 on test data. These results demonstrate that XGBoost and GB, both have excellent predictive accuracy in modeling UHPC compressive strength and shown a significant improvement over the existing literature, Omar R. Abuodeh (2020). Overall, this research confirms that leveraging GB and XGBoost significantly enhances model performance and offers valuable insights into the compressive strength behavior of UHPC. |
|---|---|
| AbstractList | Concrete with Ultra-High Performance (UHPC) is a next-generation cement-based material known for its ultra-high compressive strength, enhanced ductility, and extreme durability. By eliminating coarse aggregates and incorporating optimized fine particle packing, UHPC achieves strengths above 150 MPa. The synergy of low water-to-binder ratio, high-reactivity pozzolans like silica fume, and steel fiber reinforcement contributes to its exceptional mechanical and durability performance. UHPC offers self-consolidation, reduced permeability, and superior resistance to aggressive environments, making it ideal for critical infrastructure. Its ability to outperform traditional concrete in both structural and service life applications is transforming the future of construction. This study examines how well two sophisticated machine learning boosting models, Gradient Boosting algorithm (GB) and Extreme Gradient Boosting algorithm (XGBoost) performs while predicting the ultra-high performance concrete’s compressive strength. To evaluate this potential, a dataset consisting of 110 experimental results, compiled from existing literature, was employed to test and train the models. The GB model achieved a R² of 0.960 and Normalized Mean Square Error, NMSE of 0.041 on the train data and R² of 0.727 and NMSE of 0.452 on test data. The XGBoost model achieved a R² of 0.961 and NMSE of 0.039 on the train data and R² of 0.840 and NMSE of 0.160 on test data. These results demonstrate that XGBoost and GB, both have excellent predictive accuracy in modeling UHPC compressive strength and shown a significant improvement over the existing literature, Omar R. Abuodeh (2020). Overall, this research confirms that leveraging GB and XGBoost significantly enhances model performance and offers valuable insights into the compressive strength behavior of UHPC. Concrete with Ultra-High Performance (UHPC) is a next-generation cement-based material known for its ultra-high compressive strength, enhanced ductility, and extreme durability. By eliminating coarse aggregates and incorporating optimized fine particle packing, UHPC achieves strengths above 150 MPa. The synergy of low water-to-binder ratio, high-reactivity pozzolans like silica fume, and steel fiber reinforcement contributes to its exceptional mechanical and durability performance. UHPC offers self-consolidation, reduced permeability, and superior resistance to aggressive environments, making it ideal for critical infrastructure. Its ability to outperform traditional concrete in both structural and service life applications is transforming the future of construction. This study examines how well two sophisticated machine learning boosting models, Gradient Boosting algorithm (GB) and Extreme Gradient Boosting algorithm (XGBoost) performs while predicting the ultra-high performance concrete’s compressive strength. To evaluate this potential, a dataset consisting of 110 experimental results, compiled from existing literature, was employed to test and train the models. The GB model achieved a R² of 0.960 and Normalized Mean Square Error, NMSE of 0.041 on the train data and R² of 0.727 and NMSE of 0.452 on test data. The XGBoost model achieved a R² of 0.961 and NMSE of 0.039 on the train data and R² of 0.840 and NMSE of 0.160 on test data. These results demonstrate that XGBoost and GB, both have excellent predictive accuracy in modeling UHPC compressive strength and shown a significant improvement over the existing literature, Omar R. Abuodeh (2020). Overall, this research confirms that leveraging GB and XGBoost significantly enhances model performance and offers valuable insights into the compressive strength behavior of UHPC. |
| Author | Brahmeswari, L. Chandana Rao, B. D. V. Chandra Mohan |
| Author_xml | – sequence: 1 givenname: L. Chandana surname: Brahmeswari fullname: Brahmeswari, L. Chandana organization: Department of Civil Engineering, VNR Vignana Jyothi Institute of Engineering and Technology – sequence: 2 givenname: B. D. V. Chandra Mohan surname: Rao fullname: Rao, B. D. V. Chandra Mohan email: bdvcmrao@gmail.com organization: Department of Civil Engineering, VNR Vignana Jyothi Institute of Engineering and Technology |
| BookMark | eNp9kE1LxDAQhoOs4LruH_BU8BydpG3SHmXxCxa8uOAtpO30Y2mTmnQF_72pFbx5mS_eZ2Z4L8nKWIOEXDO4ZQDyziecgaTAUwoskYJmZ2TNU85Dy95XZM1SEVPI0uSCbL3vCghAIFiyJsdDPzlN265poxFdbd2gTYlRaU3pcJqLYXQYqE-M_OTQNFNQOqy6cuqsiU6-M0006LLtDEY9amfmQWGtn-ZC94113dQO_oqc17r3uP3NG3J4fHjbPdP969PL7n5PS5bJjGpWg6ykFmkV3pcCtYaUpZoJlHmcFgLzqsKkjotcgyxjXgnICwBRQ1zzEDbkZtk7OvtxQj-poz05E06qmAvBsiwHHlR8UZXOeu-wVqPrBu2-FAM126oWW1WwVf3YqrIAxQvkg9g06P5W_0N9Az2bfo4 |
| Cites_doi | 10.1007/s42107-025-01277-z 10.1016/j.conbuildmat.2017.11.049 10.3311/PPci.18901 10.1007/s41939-025-00737-y 10.1016/j.conbuildmat.2018.05.201 10.1007/s42107-024-01151-4 10.1016/j.istruc.2023.03.178 10.1016/j.conbuildmat.2017.07.158 10.1016/j.conbuildmat.2017.03.091 10.1007/s42107-024-01142-5 10.1016/j.cemconcomp.2007.04.009 10.1007/s42107-024-01195-6 10.1016/j.conbuildmat.2018.06.219 10.1016/j.asoc.2020.106552 10.1007/s42107-023-00836-6 10.1016/j.conbuildmat.2017.06.156 10.1016/j.conbuildmat.2012.04.030 10.1016/j.conbuildmat.2011.12.008 10.1533/9780857099891.61 10.1016/j.conbuildmat.2017.03.185 10.14359/18577 10.1007/s42107-023-00689-z 10.28991/cej-03091216 10.1002/suco.70178 10.1016/j.engstruct.2004.01.009 10.1016/j.cemconres.2006.03.009 10.7763/IJMO.2017.V7.557 10.1061/(ASCE)MT.1943-5533.000098 10.1007/s42107-025-01386-9 10.1007/s42107-023-00778-z 10.1007/s42107-024-01213-7 10.3311/PPci.10799 10.1007/s42107-023-00984-9 10.22068/ijoce.2023.13.4.566 10.1007/s42107-023-00807-x 10.1061/(ASCE)MT.1943-5533.0002144 10.1007/s42107-024-01183-w 10.1061/(ASCE)0887-3801 10.1016/j.conbuildmat.2017.08.170 10.1016/S0045-7949(01)00083-9 10.1016/j.conbuildmat.2005.01.047 10.1007/978-3-031-66051-1 10.1016/j.conbuildmat.2015.03.087 10.1016/S0045-7949(02)00451-0 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s42107-025-01476-8 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2522-011X |
| EndPage | 5154 |
| ExternalDocumentID | 10_1007_s42107_025_01476_8 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAIAL AAJBT AASML AATNV AAUYE ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABKCH ABMQK ABQBU ABRTQ ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AEOHA AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AHPBZ AHWEU AIAKS AIGIU AILAN AITGF AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF ATHPR AXYYD AYFIA BGNMA CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J P2P PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX CITATION |
| ID | FETCH-LOGICAL-c1878-a1f07d7a65d01176eaa0515a16e7935b6e9dde4f3b9a07c32d609b006f03f2f03 |
| IEDL.DBID | RSV |
| ISSN | 1563-0854 |
| IngestDate | Sat Nov 01 14:52:22 EDT 2025 Sat Nov 29 07:02:28 EST 2025 Wed Oct 29 01:26:08 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Keywords | score R Normalized mean square error (NMSE) Gradient boosting algorithm (GB) Ultra-high performance concrete (UHPC) Compressive strength Extreme gradient boosting algorithm (XGBoost) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1878-a1f07d7a65d01176eaa0515a16e7935b6e9dde4f3b9a07c32d609b006f03f2f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3266188902 |
| PQPubID | 7433668 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3266188902 crossref_primary_10_1007_s42107_025_01476_8 springer_journals_10_1007_s42107_025_01476_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20251200 2025-12-00 20251201 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 20251200 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationSubtitle | Building and Housing |
| PublicationTitle | Asian journal of civil engineering. Building and housing |
| PublicationTitleAbbrev | Asian J Civ Eng |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | A Alsalman (1476_CR5) 2017; 153 1476_CR23 A Kaveh (1476_CR27) 2022; 66 BB Adhikary (1476_CR3) 2006; 20 Y Yua (1476_CR44) 2018; 184 A Kaveh (1476_CR24) 2023; 52 Z Waszczyszyn (1476_CR42) 2001; 79 SSA Kumar (1476_CR30) 2025; 26 SR Wani (1476_CR41) 2025; 26 JA Abdalla (1476_CR1) 2007; 334 T Bansal (1476_CR8) 2024; 25 F Alsharari (1476_CR6) 2025; 26 M Hassan (1476_CR18) 2017; 144 MG Sohail (1476_CR36) 2018; 30 K Habel (1476_CR15) 2006; 36 OR Abuodeh (1476_CR2) 2020; 95 K Wille (1476_CR43) 2015; 86 HM Tanarslan (1476_CR38) 2012; 30 M Shafieifar (1476_CR35) 2017; 156 SC Sapkota (1476_CR33) 2025; 160 C George (1476_CR10) 2025; 26 1476_CR11 BA Graybeal (1476_CR13) 2007; 104 M Alkaysi (1476_CR4) 2017; 144 A Kaveh (1476_CR26) 2017; 7 J Kasperkiewicz (1476_CR22) 1995; 9 G Tayfur (1476_CR39) 2014; 26 MN Hadi (1476_CR16) 2003; 81 AW Oreta (1476_CR32) 2004; 26 A Satyanarayana (1476_CR34) 2024; 25 RK Tipu (1476_CR40) 2023; 24 P Kumar (1476_CR28) 2024; 25 DK Bui (1476_CR9) 2018; 180 CTG Awodiji (1476_CR7) 2018; 4 N Islam (1476_CR20) 2024; 25 DL Nguyen (1476_CR31) 2024; 25 M Gupta (1476_CR14) 2024; 25 A Kaveh (1476_CR25) 2018; 62 R Zhong (1476_CR45) 2018; 160 AMT Hassan (1476_CR17) 2012; 37 M Ghrici (1476_CR12) 2017; 109 P Hosseini (1476_CR19) 2023; 13 HO Jang (1476_CR21) 2017; 152 SH Subramanya (1476_CR37) 2025; 26 R Kumar (1476_CR29) 2025; 2025 |
| References_xml | – volume: 26 start-page: 1683 year: 2025 ident: 1476_CR30 publication-title: Asian Journal of Civil Engineering doi: 10.1007/s42107-025-01277-z – volume: 160 start-page: 505 year: 2018 ident: 1476_CR45 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2017.11.049 – volume: 66 start-page: 18 issue: 1 year: 2022 ident: 1476_CR27 publication-title: Periodica Polytechnica Civil Engineering doi: 10.3311/PPci.18901 – volume: 160 start-page: 1 year: 2025 ident: 1476_CR33 publication-title: Multiscale and Multidisciplinary Modeling Experiments and Design doi: 10.1007/s41939-025-00737-y – volume: 334 start-page: 741 issue: 5 year: 2007 ident: 1476_CR1 publication-title: Journal of the Franklin Institute doi: 10.1016/j.conbuildmat.2018.05.201 – volume: 25 start-page: 5865 year: 2024 ident: 1476_CR34 publication-title: Asian Journal of Civil Engineering doi: 10.1007/s42107-024-01151-4 – volume: 52 start-page: 256 year: 2023 ident: 1476_CR24 publication-title: Structures doi: 10.1016/j.istruc.2023.03.178 – volume: 153 start-page: 918 year: 2017 ident: 1476_CR5 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2017.07.158 – volume: 144 start-page: 412 year: 2017 ident: 1476_CR4 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2017.03.091 – volume: 25 start-page: 5741 year: 2024 ident: 1476_CR14 publication-title: Asian Journal of Civil Engineering doi: 10.1007/s42107-024-01142-5 – volume: 109 start-page: 542 year: 2017 ident: 1476_CR12 publication-title: Cement and Concrete Composites doi: 10.1016/j.cemconcomp.2007.04.009 – volume: 26 start-page: 373 year: 2025 ident: 1476_CR41 publication-title: Asian Journal of Civil Engineering doi: 10.1007/s42107-024-01195-6 – volume: 184 start-page: 229 year: 2018 ident: 1476_CR44 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2018.06.219 – volume: 95 start-page: 106552 year: 2020 ident: 1476_CR2 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106552 – volume: 25 start-page: 1195 year: 2024 ident: 1476_CR8 publication-title: Asian Journal of Civil Engineering doi: 10.1007/s42107-023-00836-6 – volume: 152 start-page: 16 year: 2017 ident: 1476_CR21 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2017.06.156 – volume: 37 start-page: 874 year: 2012 ident: 1476_CR17 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2012.04.030 – volume: 30 start-page: 556 year: 2012 ident: 1476_CR38 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2011.12.008 – ident: 1476_CR11 doi: 10.1533/9780857099891.61 – volume: 144 start-page: 747 year: 2017 ident: 1476_CR18 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2017.03.185 – volume: 104 start-page: 146 year: 2007 ident: 1476_CR13 publication-title: ACI Materials Journal doi: 10.14359/18577 – volume: 24 start-page: 2985 year: 2023 ident: 1476_CR40 publication-title: Asian Journal of Civil Engineering doi: 10.1007/s42107-023-00689-z – volume: 180 start-page: 320 year: 2018 ident: 1476_CR9 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2018.05.201 – volume: 4 start-page: 3005 issue: 12 year: 2018 ident: 1476_CR7 publication-title: Civil Engineering Journal doi: 10.28991/cej-03091216 – volume: 2025 start-page: 1 year: 2025 ident: 1476_CR29 publication-title: Structural Concrete doi: 10.1002/suco.70178 – volume: 26 start-page: 681 issue: 5 year: 2004 ident: 1476_CR32 publication-title: Engineering Structures doi: 10.1016/j.engstruct.2004.01.009 – volume: 36 start-page: 1362 year: 2006 ident: 1476_CR15 publication-title: Cement and Concrete Research doi: 10.1016/j.cemconres.2006.03.009 – volume: 7 start-page: 48 issue: 1 year: 2017 ident: 1476_CR26 publication-title: International Journal of Modeling and Optimization doi: 10.7763/IJMO.2017.V7.557 – volume: 26 start-page: 04014079 issue: 11 year: 2014 ident: 1476_CR39 publication-title: Journal of Materials in Civil Engineering doi: 10.1061/(ASCE)MT.1943-5533.000098 – volume: 26 start-page: 3533 year: 2025 ident: 1476_CR37 publication-title: Asian Journal of Civil Engineering doi: 10.1007/s42107-025-01386-9 – volume: 25 start-page: 327 year: 2024 ident: 1476_CR20 publication-title: Asian Journal of Civil Engineering doi: 10.1007/s42107-023-00778-z – volume: 26 start-page: 667 year: 2025 ident: 1476_CR10 publication-title: Asian Journal of Civil Engineering doi: 10.1007/s42107-024-01213-7 – volume: 62 start-page: 281 issue: 2 year: 2018 ident: 1476_CR25 publication-title: Periodica Polytechnica Civil Engineering doi: 10.3311/PPci.10799 – volume: 25 start-page: 3363 year: 2024 ident: 1476_CR31 publication-title: Asian Journal of Civil Engineering doi: 10.1007/s42107-023-00984-9 – volume: 13 start-page: 457 issue: 4 year: 2023 ident: 1476_CR19 publication-title: International Journal of Optimization in Civil Engineering doi: 10.22068/ijoce.2023.13.4.566 – volume: 25 start-page: 723 year: 2024 ident: 1476_CR28 publication-title: Asian Journal of Civil Engineering doi: 10.1007/s42107-023-00807-x – volume: 30 start-page: 1 issue: 4 year: 2018 ident: 1476_CR36 publication-title: Journal of Materials in Civil Engineering doi: 10.1061/(ASCE)MT.1943-5533.0002144 – volume: 26 start-page: 179 year: 2025 ident: 1476_CR6 publication-title: Asian Journal of Civil Engineering doi: 10.1007/s42107-024-01183-w – volume: 9 start-page: 279 issue: 4 year: 1995 ident: 1476_CR22 publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)0887-3801 – volume: 156 start-page: 402 year: 2017 ident: 1476_CR35 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2017.08.170 – volume: 79 start-page: 2261 year: 2001 ident: 1476_CR42 publication-title: Computers & Structures doi: 10.1016/S0045-7949(01)00083-9 – volume: 20 start-page: 801 year: 2006 ident: 1476_CR3 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2005.01.047 – ident: 1476_CR23 doi: 10.1007/978-3-031-66051-1 – volume: 86 start-page: 33 year: 2015 ident: 1476_CR43 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2015.03.087 – volume: 81 start-page: 373 issue: 6 year: 2003 ident: 1476_CR16 publication-title: Computers & Structures doi: 10.1016/S0045-7949(02)00451-0 |
| SSID | ssib042110714 ssj0003009064 ssib008502629 |
| Score | 2.3353672 |
| Snippet | Concrete with Ultra-High Performance (UHPC) is a next-generation cement-based material known for its ultra-high compressive strength, enhanced ductility, and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 5139 |
| SubjectTerms | Accuracy Algorithms Building Materials Cement Civil Engineering Compressive strength Concrete Concrete properties Critical infrastructure Datasets Deep learning Ductility Durability Engineering Fiber reinforcement Fuzzy logic Machine learning Neural networks Pozzolans Reinforced concrete Service life Shear strength Silica fume Steel fibers Sustainable Architecture/Green Buildings Tensile strength Ultra high performance concrete |
| Title | Ultra-high performance concrete compressive strength prediction using machine learning boosting algorithms |
| URI | https://link.springer.com/article/10.1007/s42107-025-01476-8 https://www.proquest.com/docview/3266188902 |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2522-011X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003009064 issn: 1563-0854 databaseCode: RSV dateStart: 20180101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT4MwFG90etCD38b5lR68aZNCoZSjMS6eFqPO7EYKtLhlYwvg_n5fOxhq9KAXQkID4b3Xvt8v7wuhK65TrihVJGGuJl4cOkTEjiKOZq7kcZIEWtphE0G_L4bD8LEuCiubbPcmJGlP6lWxmwfsJCBm_CrA-oATsY42wN0Jsx2fnl9XViR84BWt0_csxaljhWPLAWhIbV8p4C6MwHqvrqb5-TNfPVYLQ79FTq1D6u3-71f20E4NQPHt0mL20ZrKD9D2p7aEh2g8mFSFJKaTMZ63hQUYqDNgzMrcTJf5swuFTbFJnlWwsjAxH6NnbJLpMzy1eZoK14MpMgyAvjRZ1lhOslkxqt6m5REa9O5f7h5IPZOBJI4AwikdTYM0kNxPTTc5rqQ0U2KkwxXsdD_mKoQD09MsDiUNwABSTk3bRa4p0y5cjlEnn-XqBGEOUCwF4xBUMi_xARhJmvo6SF3G4jSJu-i6kXs0X7beiFZNlq0EI5BgZCUYiS46b1QT1duwjJiBH8KEUrvoplFF-_j3t53-bfkZ2nKNNm2ayznqVMW7ukCbyaIalcWlNc8PAE3dgQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT4MwFH_RaaIe_DZOp_bgTZsUCgWOxmhm1MWoM7uRAu3UuLkA-vf72sGmRg96IQQaSN97bX-_vC-AQ6EzoRhTNOWupl4SOTRMHEUdzV0pkjQNtLTNJoJOJ-z1opsqKayoo91rl6TdqSfJbh6yk4Ca9qsI6wNBw1mYw2e-CeS7vXuYWFHoI6-YHvqepTiVr_DZcgAWMVtXCrkLpzjeq7Jpfv7N1xNrCkO_eU7tgXS-8r-prMJyBUDJydhi1mBGDddh6VNZwg147r6UuaSmkjEZTRMLCFJnxJiluRmM42ffFTHJJsN-iSNz4_MxeiYmmL5PBjZOU5GqMUWfIKAvTJQ1kS_91_ypfBwUm9A9P7s_bdOqJwNNnRAJp3Q0C7JACj8z1eSEktJ0iZGOULjS_USoCDdMT_MkkixAA8gEM2UXhWZcu3jZgsbwdai2gQiEYhkaR8gk91IfgZFkma-DzOU8ydKkCUe13OPRuPRGPCmybCUYowRjK8E4bEKrVk1cLcMi5gZ-hMaV2oTjWhXT179_bedvww9goX1_fRVfXXQud2HRNZq1IS8taJT5m9qD-fS9fCryfWuqH2sO4GU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SpJT20PRJt3lUh95aEdmyZftY0i4JCUsgD3IzsiW5u2Sdxevm93dGa6_T0B5CL8ZgYWHNWPo-ZuYbgM_KGWWFsLyUoeNRkQU8LQLLAydDrYqyTJz2zSaSySS9vs7O7lXx-2z3PiS5qmkglaa6PVgYd7AufIuQqSScWrEixE8UT5_AVkRNg4ivn1-tPSqNkWMMACDydKeLG848HxCZ8BpTyGMkx_FRV1nz92n-PL0GSPogiuoPp_H2_3_WK3jZAVP2beVJr2HD1m_gxT25wrcwu7xpG81J4ZgthoIDhpMg9mzpZr7Kq72zjIpQ6qrFkQ3Fgsj-jJLsKzb3-ZuWdQ0rKoZAf0nZ10zfVLfNtP05X76Dy_GPi8Mj3vVq4GWQIhHVgROJSbSKDanMKas1dY_RgbK4A8SFshlupJGTRaZFgo5hlCA5RuWEdCFe3sNmfVvbD8AUQjSDTpMKLaMyRsCkhYldYkIpC1MWI_jS2yBfrCQ58rX4sl_BHFcw9yuYpyPY7c2Ud7_nMpcES1IKsY7ga2-W4fG_3_bxccM_wbOz7-P89HhysgPPQzKsz4TZhc22-WX34Gl5106Xzb732t_FvOlJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-high+performance+concrete+compressive+strength+prediction+using+machine+learning+boosting+algorithms&rft.jtitle=Asian+journal+of+civil+engineering.+Building+and+housing&rft.au=Brahmeswari%2C+L.+Chandana&rft.au=Rao%2C+B.+D.+V.+Chandra+Mohan&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1563-0854&rft.eissn=2522-011X&rft.volume=26&rft.issue=12&rft.spage=5139&rft.epage=5154&rft_id=info:doi/10.1007%2Fs42107-025-01476-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1563-0854&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1563-0854&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1563-0854&client=summon |