A generalization of André-Jeannin’s symmetric identity
In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam numbers , defined by a three-term recurrence = with constant coefficients. In this paper, we extend this identity to sequences satisfying a three-term recurrence = + with arbitrary coefficients. Then...
Gespeichert in:
| Veröffentlicht in: | Pure mathematics and applications Jg. 27; H. 1; S. 98 - 118 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch Ungarisch |
| Veröffentlicht: |
Firenze
Sciendo
01.07.2018
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Schlagworte: | |
| ISSN: | 1788-800X, 1788-800X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam numbers
, defined by a three-term recurrence
=
with constant coefficients. In this paper, we extend this identity to sequences
satisfying a three-term recurrence
=
+
with arbitrary coefficients. Then, we specialize such an identity to several
-polynomials of combinatorial interest, such as the
-Fibonacci,
-Lucas,
-Pell,
-Jacobsthal,
-Chebyshev and
-Morgan-Voyce polynomials. |
|---|---|
| AbstractList | In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam numbers
W
n
, defined by a three-term recurrence
W
n
+2
=
P W
n
+1
− QW
n
with constant coefficients. In this paper, we extend this identity to sequences
{a
n
}
n
∈ℕ
satisfying a three-term recurrence
a
n
+2
=
p
n
+1
a
n
+1
+
q
n
+1
a
n
with arbitrary coefficients. Then, we specialize such an identity to several
q
-polynomials of combinatorial interest, such as the
q
-Fibonacci,
q
-Lucas,
q
-Pell,
q
-Jacobsthal,
q
-Chebyshev and
q
-Morgan-Voyce polynomials. In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam numbers Wn, defined by a three-term recurrence Wn+2 = P Wn+1− QWn with constant coefficients. In this paper, we extend this identity to sequences {an}n∈ℕ satisfying a three-term recurrence an+2 = pn+1an+1 + qn+1an with arbitrary coefficients. Then, we specialize such an identity to several q-polynomials of combinatorial interest, such as the q-Fibonacci, q-Lucas, q-Pell, q-Jacobsthal, q-Chebyshev and q-Morgan-Voyce polynomials. In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam numbers , defined by a three-term recurrence = with constant coefficients. In this paper, we extend this identity to sequences satisfying a three-term recurrence = + with arbitrary coefficients. Then, we specialize such an identity to several -polynomials of combinatorial interest, such as the -Fibonacci, -Lucas, -Pell, -Jacobsthal, -Chebyshev and -Morgan-Voyce polynomials. |
| Author | Munarini, Emanuele |
| Author_xml | – sequence: 1 givenname: Emanuele surname: Munarini fullname: Munarini, Emanuele email: emanuele.munarini@polimi.it organization: Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy |
| BookMark | eNp9kMFKw0AQhhepYK29eg54Tp3d7Wa3eCpFq1LwouBt2SSzJaXZ1N0EiSdfw0fwOXwTn8SECnoQ5zJz-L9_4DsmA1c5JOSUwoQKKs53TWliBlTEAEwdkCGVSsUK4HHw6z4i4xA20I2Qs4SrIZnNozU69GZbvJi6qFxU2Wjucv_xHt-ica5wn69vIQptWWLtiywqcnR1Ubcn5NCabcDx9x6Rh6vL-8V1vLpb3izmqzijSqqY8SmnNpeYcgMUhWBSTa01qUmttZTlQhqD04RLAJ4Ym6eWIWIKDEFmLOEjcrbv3fnqqcFQ603VeNe91JxJDh2YwL8pKiRNFJd912SfynwVgkerd74ojW81Bd171L1H3XvUvccOuNgDz2Zbo89x7Zu2O37a_waZpDPFvwDZzHxl |
| Cites_doi | 10.1080/00150517.1966.12431395 10.1016/j.aim.2005.04.006 10.1007/s00026-011-0067-8 10.1016/S0012-365X(01)00475-7 10.1080/00150517.2005.12428364 10.1109/TCT.1959.1086564 10.1080/00150517.1968.12431247 10.2140/pjm.1983.104.269 10.1215/S0012-7094-65-03244-8 10.1080/00150517.1997.12429031 10.2478/s11533-011-0002-6 10.1080/00150517.1975.12430654 10.1080/00150517.1965.12431416 10.1016/j.disc.2006.03.067 10.1080/00150517.1974.12430696 10.1080/00150517.1994.12429229 10.1016/j.ejc.2008.01.015 |
| ContentType | Journal Article |
| Copyright | 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.1515/puma-2015-0028 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1788-800X |
| EndPage | 118 |
| ExternalDocumentID | 10_1515_puma_2015_0028 10_1515_puma_2015_002827198 |
| GroupedDBID | 9WM AATOW ABFKT ACGFS ADBLJ AFFHD AFKRA AHGSO AIKXB ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU EBS EJD KQ8 PHGZM PHGZT PIMPY QD8 AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c1878-23431fd7eb3a01e552784ffababfff12d57aae46370036afdbf2eeeb02e07c263 |
| IEDL.DBID | BENPR |
| ISSN | 1788-800X |
| IngestDate | Thu Nov 20 01:19:22 EST 2025 Sun Oct 19 01:25:46 EDT 2025 Sat Nov 29 03:33:43 EST 2025 Sat Nov 29 01:30:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English Hungarian |
| License | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1878-23431fd7eb3a01e552784ffababfff12d57aae46370036afdbf2eeeb02e07c263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3273037060?pq-origsite=%requestingapplication% |
| PQID | 3157168376 |
| PQPubID | 6771863 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_3273037060 proquest_journals_3157168376 crossref_primary_10_1515_puma_2015_0028 walterdegruyter_journals_10_1515_puma_2015_002827198 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-01 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Firenze |
| PublicationPlace_xml | – name: Firenze |
| PublicationTitle | Pure mathematics and applications |
| PublicationYear | 2018 |
| Publisher | Sciendo De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Publisher_xml | – name: Sciendo – name: De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| References | 2025012100174595589_j_puma-2015-0028_ref_009_w2aab3b7b5b1b6b1ab1ab9Aa 2025012100174595589_j_puma-2015-0028_ref_004_w2aab3b7b5b1b6b1ab1ab4Aa 2025012100174595589_j_puma-2015-0028_ref_017_w2aab3b7b5b1b6b1ab1ac17Aa 2025012100174595589_j_puma-2015-0028_ref_015_w2aab3b7b5b1b6b1ab1ac15Aa 2025012100174595589_j_puma-2015-0028_ref_008_w2aab3b7b5b1b6b1ab1ab8Aa 2025012100174595589_j_puma-2015-0028_ref_011_w2aab3b7b5b1b6b1ab1ac11Aa 2025012100174595589_j_puma-2015-0028_ref_003_w2aab3b7b5b1b6b1ab1ab3Aa 2025012100174595589_j_puma-2015-0028_ref_010_w2aab3b7b5b1b6b1ab1ac10Aa 2025012100174595589_j_puma-2015-0028_ref_007_w2aab3b7b5b1b6b1ab1ab7Aa 2025012100174595589_j_puma-2015-0028_ref_013_w2aab3b7b5b1b6b1ab1ac13Aa 2025012100174595589_j_puma-2015-0028_ref_002_w2aab3b7b5b1b6b1ab1ab2Aa 2025012100174595589_j_puma-2015-0028_ref_016_w2aab3b7b5b1b6b1ab1ac16Aa 2025012100174595589_j_puma-2015-0028_ref_018_w2aab3b7b5b1b6b1ab1ac18Aa 2025012100174595589_j_puma-2015-0028_ref_006_w2aab3b7b5b1b6b1ab1ab6Aa 2025012100174595589_j_puma-2015-0028_ref_012_w2aab3b7b5b1b6b1ab1ac12Aa 2025012100174595589_j_puma-2015-0028_ref_001_w2aab3b7b5b1b6b1ab1ab1Aa 2025012100174595589_j_puma-2015-0028_ref_005_w2aab3b7b5b1b6b1ab1ab5Aa 2025012100174595589_j_puma-2015-0028_ref_020_w2aab3b7b5b1b6b1ab1ac20Aa 2025012100174595589_j_puma-2015-0028_ref_014_w2aab3b7b5b1b6b1ab1ac14Aa 2025012100174595589_j_puma-2015-0028_ref_019_w2aab3b7b5b1b6b1ab1ac19Aa |
| References_xml | – ident: 2025012100174595589_j_puma-2015-0028_ref_019_w2aab3b7b5b1b6b1ab1ac19Aa doi: 10.1080/00150517.1966.12431395 – ident: 2025012100174595589_j_puma-2015-0028_ref_011_w2aab3b7b5b1b6b1ab1ac11Aa doi: 10.1016/j.aim.2005.04.006 – ident: 2025012100174595589_j_puma-2015-0028_ref_003_w2aab3b7b5b1b6b1ab1ab3Aa doi: 10.1007/s00026-011-0067-8 – ident: 2025012100174595589_j_puma-2015-0028_ref_016_w2aab3b7b5b1b6b1ab1ac16Aa doi: 10.1016/S0012-365X(01)00475-7 – ident: 2025012100174595589_j_puma-2015-0028_ref_014_w2aab3b7b5b1b6b1ab1ac14Aa doi: 10.1080/00150517.2005.12428364 – ident: 2025012100174595589_j_puma-2015-0028_ref_013_w2aab3b7b5b1b6b1ab1ac13Aa doi: 10.1109/TCT.1959.1086564 – ident: 2025012100174595589_j_puma-2015-0028_ref_020_w2aab3b7b5b1b6b1ab1ac20Aa doi: 10.1080/00150517.1968.12431247 – ident: 2025012100174595589_j_puma-2015-0028_ref_001_w2aab3b7b5b1b6b1ab1ab1Aa doi: 10.2140/pjm.1983.104.269 – ident: 2025012100174595589_j_puma-2015-0028_ref_017_w2aab3b7b5b1b6b1ab1ac17Aa – ident: 2025012100174595589_j_puma-2015-0028_ref_009_w2aab3b7b5b1b6b1ab1ab9Aa doi: 10.1215/S0012-7094-65-03244-8 – ident: 2025012100174595589_j_puma-2015-0028_ref_002_w2aab3b7b5b1b6b1ab1ab2Aa doi: 10.1080/00150517.1997.12429031 – ident: 2025012100174595589_j_puma-2015-0028_ref_012_w2aab3b7b5b1b6b1ab1ac12Aa doi: 10.2478/s11533-011-0002-6 – ident: 2025012100174595589_j_puma-2015-0028_ref_005_w2aab3b7b5b1b6b1ab1ab5Aa doi: 10.1080/00150517.1975.12430654 – ident: 2025012100174595589_j_puma-2015-0028_ref_008_w2aab3b7b5b1b6b1ab1ab8Aa doi: 10.1080/00150517.1965.12431416 – ident: 2025012100174595589_j_puma-2015-0028_ref_010_w2aab3b7b5b1b6b1ab1ac10Aa – ident: 2025012100174595589_j_puma-2015-0028_ref_018_w2aab3b7b5b1b6b1ab1ac18Aa – ident: 2025012100174595589_j_puma-2015-0028_ref_015_w2aab3b7b5b1b6b1ab1ac15Aa doi: 10.1016/j.disc.2006.03.067 – ident: 2025012100174595589_j_puma-2015-0028_ref_004_w2aab3b7b5b1b6b1ab1ab4Aa doi: 10.1080/00150517.1974.12430696 – ident: 2025012100174595589_j_puma-2015-0028_ref_006_w2aab3b7b5b1b6b1ab1ab6Aa doi: 10.1080/00150517.1994.12429229 – ident: 2025012100174595589_j_puma-2015-0028_ref_007_w2aab3b7b5b1b6b1ab1ab7Aa doi: 10.1016/j.ejc.2008.01.015 |
| SSID | ssj0000579638 |
| Score | 2.031503 |
| Snippet | In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam numbers
, defined by a three-term recurrence
=
with... In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam numbers W n , defined by a three-term recurrence W n +2 =... In 1997, Richard André-Jeannin obtained a symmetric identity involving the reciprocal of the Horadam numbers Wn, defined by a three-term recurrence Wn+2 = P... |
| SourceID | proquest crossref walterdegruyter |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 98 |
| SubjectTerms | Chebyshev polynomials combinatorial sums Fibonacci numbers Fibonacci polynomials Jacobsthal numbers Jacobsthal polynomials Lucas numbers Lucas polynomials Morgan-Voyce polynomials Pell numbers Pell polynomials Primary 05A19 Secondary 05A30, 11B65 sums of reciprocals three-term recurrences |
| Title | A generalization of André-Jeannin’s symmetric identity |
| URI | https://reference-global.com/article/10.1515/puma-2015-0028 https://www.proquest.com/docview/3157168376 https://www.proquest.com/docview/3273037060 |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1788-800X dateEnd: 20201231 omitProxy: false ssIdentifier: ssj0000579638 issn: 1788-800X databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1788-800X dateEnd: 20201231 omitProxy: false ssIdentifier: ssj0000579638 issn: 1788-800X databaseCode: PIMPY dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWgZYChvEWhoAxITBZNnMTJhApqBYhWFQJUpsjxo3Tog6YFdeM3-AS-gz_hS7hO3FagioUpQ-zEuvfa92H7HISOOaW-R-0Qh1z42BXCwwG3OY49B9pTrkhK9_ZwQxuNoNUKm6bglphjldM1MV2oRZ_rGvkpAT9bJhrr5WzwjDVrlN5dNRQayyivkcrAzvPn1UbzdlZlSa9aksCgNYLvPh2MuwxMw_awTjd-eqN5iFl4TTerhWwPx5PRdHM09Tm19f-OdgMVTLRpVTLz2ERLT-MttFafQbUm2yisWO0MetrcyLT6ytLHHD8_8LVMGY2-3t4TK5l0u5p9i1ud7G7vZAfd16p3F5fY8ClgbgeQLDoEogUlKOTPrGxLjb0WuEqxmMVKKdsRHmVMuj6MG_waUyJWjpQyLjuyTLnjk12U6_V7cg9ZAvIuG_pIEghXUBITh0lfCeikiGBeEZ1M5RoNMtiMSKcboIFIayDSGoi0BoqoNJVgZKZPEhEb7MeH3Nlf_Hom3SJyf2lq3mrx_xwwzGD_768eoFVoH2SncksoNxqO5SFa4S-jTjI8MjYGz-ZVvfn4DTsb4QQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB61KVLh0EIpIlDKHkA9Wd21d9fOAaEKqJrmRzkEVE6L1z-hhzQhm1Dlxmv0EXrpS_RNeBLG-5OIKuLWA-f1n_b7POPxeGYA3ijO44gHDdJQOiah1hERKlAkjSi258qyvNzblzbvdsXZWaO3BjdVLIx7VlnJxFxQ65Fyd-SHDPWsz1yul_fjH8RVjXLe1aqERkGLlplfosmWvWt-RHzfUnr8qf_hhJRVBYgKBJpMlKHOtJqjFSn9wLgMZCK0VqYytdYGVEdcShPGOBdKd2l1aqkxJvWp8bmiMcNx12EjRLL7NdjoNTu9r4tbnTy0k4kyOySeFQ7Hs6FEKgYRcebN39pveaTdusyd49oMJrP5tHLG5jruePt_-zuPYas8TXtHBf2fwNr32Q486ixS0WZPoXHkDYrU2mXEqTeynnvGeXtNTk1esen3r6vMy-bDoasuprzzInZ5vguf72Xtz6B2Mbowz8HTaFcG2McwoUPNWcqoNLHV2MkyLaM6HFQ4JuMiLUjizClEPHGIJw7xxCFeh70KsaQUD1nCAtwfsUDhvvrzAs06hHeYsWy1ej6KG0-8-Peor2HzpN9pJ-1mt_USHmJfUbxA3oPadDIzr-CB-jk9zyb7Jb89-HbfpPkD158-ig |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalization+of+Andr%C3%A9-Jeannin%E2%80%99s+symmetric+identity&rft.jtitle=Pure+mathematics+and+applications&rft.au=Munarini%2C+Emanuele&rft.date=2018-07-01&rft.pub=Sciendo&rft.eissn=1788-800X&rft.volume=27&rft.issue=1&rft.spage=98&rft.epage=118&rft_id=info:doi/10.1515%2Fpuma-2015-0028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_puma_2015_002827198 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1788-800X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1788-800X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1788-800X&client=summon |