Test case prioritization using modified genetic algorithm and ant colony optimization for regression testing

Regression testing (RT) plays an essential role in software maintenance. The occurrence of any new fault during the re-testing or modification process needs to be analyzed effectually. RT needs enormous effort to produce a higher fault detection rate. Test case prioritization (TCP) is an efficient w...

Full description

Saved in:
Bibliographic Details
Published in:International Journal of Advanced Technology and Engineering Exploration Vol. 9; no. 88; p. 384
Main Authors: Akila, T K, Malathi, A
Format: Journal Article
Language:English
Published: Bhopal Accent Social and Welfare Society 01.03.2022
Subjects:
ISSN:2394-5443, 2394-7454
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Regression testing (RT) plays an essential role in software maintenance. The occurrence of any new fault during the re-testing or modification process needs to be analyzed effectually. RT needs enormous effort to produce a higher fault detection rate. Test case prioritization (TCP) is an efficient way to predict the fault detection rate. Various researchers modelled the TCP method to provide a single objective solution; however, this work concentrates on providing a multi-objective solution using a meta-heuristic optimization approach. Here, two different approaches known as ant colony optimization (ACO) and genetic algorithm (GA) are adopted to offer a multi-objective solution with a better fault detection rate. The characteristics of the ACO and GA are analyzed to prioritize the test case by combining the multi-dimensional characteristics under the test environment to enhance the fault detection rate. Here, some experimentation is made to compute the performance of the proposed model by evaluating the number of test cases, number of iterations, and ant traversal path. The proposed model shows better trade-off in contrast to the prevailing approaches where the fault detection rate of multi-objective (ACO and GA) model provides outcomes of 94.5%, 94.8%, 93.8%, 92.5%, 95.8%, 97.8%, 99.2%, and 93.5% respectively.
AbstractList Regression testing (RT) plays an essential role in software maintenance. The occurrence of any new fault during the re-testing or modification process needs to be analyzed effectually. RT needs enormous effort to produce a higher fault detection rate. Test case prioritization (TCP) is an efficient way to predict the fault detection rate. Various researchers modelled the TCP method to provide a single objective solution; however, this work concentrates on providing a multi-objective solution using a meta-heuristic optimization approach. Here, two different approaches known as ant colony optimization (ACO) and genetic algorithm (GA) are adopted to offer a multi-objective solution with a better fault detection rate. The characteristics of the ACO and GA are analyzed to prioritize the test case by combining the multi-dimensional characteristics under the test environment to enhance the fault detection rate. Here, some experimentation is made to compute the performance of the proposed model by evaluating the number of test cases, number of iterations, and ant traversal path. The proposed model shows better trade-off in contrast to the prevailing approaches where the fault detection rate of multi-objective (ACO and GA) model provides outcomes of 94.5%, 94.8%, 93.8%, 92.5%, 95.8%, 97.8%, 99.2%, and 93.5% respectively.
Author Akila, T K
Malathi, A
Author_xml – sequence: 1
  givenname: T
  surname: Akila
  middlename: K
  fullname: Akila, T K
– sequence: 2
  givenname: A
  surname: Malathi
  fullname: Malathi, A
BookMark eNo1kM1OwzAQhC1UJErpE3CxxDll_RM7PlZVgaJKXMo5clI7uEriYqeH8vS4pBxWuyPN7EjfPZr0vjcIPRJYEEWAPG_el7v1ekGBkkUhuaTyBk0pUzyTPOeT651zzu7QPMYDADAAxZSaonZn4oBrHQ0-BueDG9yPHpzv8Sm6vsGd3zvrzB43pjeDq7Fum4vrq8O636dJYd_6_oz9cXDdf9j6gINpgonxIodUkr49oFur22jm1z1Dny_r3eot2368blbLbVaTQsqMWGoBipoKq2sNFTEFMZYoW4ikKy7zWpFKGVJUQlhghgIrOIeqAOAVrdgMPY1_j8F_n1J3efCn0KfKkgohhaC5oMnFRlcdfIzB2DIR6HQ4lwTKP7LlSLa8kC1HsuwX5S9v7A
ContentType Journal Article
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.19101/IJATEE.2021.874727
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2394-7454
ExternalDocumentID 10_19101_IJATEE_2021_874727
GroupedDBID 8FE
8FG
AAYXX
ABJCF
ACIWK
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
L6V
M7S
P62
PHGZM
PHGZT
PQGLB
PTHSS
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c1877-1f2f008c26faca0b1e81ef19f86acab475c91b9e18b66f03e2038440b8004b2b3
IEDL.DBID M7S
ISSN 2394-5443
IngestDate Fri Jul 25 11:56:12 EDT 2025
Sat Nov 29 06:21:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 88
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1877-1f2f008c26faca0b1e81ef19f86acab475c91b9e18b66f03e2038440b8004b2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.accentsjournals.org/PaperDirectory/Journal/IJATEE/2022/3/9.pdf
PQID 2667662562
PQPubID 2037694
ParticipantIDs proquest_journals_2667662562
crossref_primary_10_19101_IJATEE_2021_874727
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Bhopal
PublicationPlace_xml – name: Bhopal
PublicationTitle International Journal of Advanced Technology and Engineering Exploration
PublicationYear 2022
Publisher Accent Social and Welfare Society
Publisher_xml – name: Accent Social and Welfare Society
SSID ssj0003009399
Score 1.822073
Snippet Regression testing (RT) plays an essential role in software maintenance. The occurrence of any new fault during the re-testing or modification process needs to...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 384
SubjectTerms Ant colony optimization
Experimentation
Fault detection
Genetic algorithms
Heuristic methods
Optimization
Title Test case prioritization using modified genetic algorithm and ant colony optimization for regression testing
URI https://www.proquest.com/docview/2667662562
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2394-7454
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003009399
  issn: 2394-5443
  databaseCode: P5Z
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 2394-7454
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003009399
  issn: 2394-5443
  databaseCode: M7S
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl:
  eissn: 2394-7454
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003009399
  issn: 2394-5443
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF609eDFBypWa9mDR9dmH002J1GpKEgpWqF4CdnNphbapLZV8N87k6Q-Ll48JBCSDWFnd-abzez3EXLqm47nOe0zwNKSKaktM1py5lsRh8pI3jGFasl90Ovp4TDsVwtui6qscuUTC0ed5BbXyNsCizEBrPviYvbKUDUK_65WEhrrpI4sCbwo3Xv8WmORmK8XEpIoAM6Q6q0iHoIgydt3MAO6XcgRBT_XAKtRWeZncPrtm4uAc7P930_dIVsV1KSX5djYJWsu2yOTAbyHWohddDYf50hpVG7EpFgBP6LTPBmnAEspDCzc30jjyQifepnSOEvggMbgL7MPmoOzma4aA_Slczcqi2ozukTujmy0T55uuoPrW1YpLjDLdRAwnooUQIEVfhrb2DPcae5SHqbah2ujgo4NuQkd18b3U0864UmtlGcAdiojjDwgtSzP3CGhofWMTWTA09ipRGujbIhchZASW6ukbJCzVVdHs5JYI8KEBC0TlZaJ0DJRaZkGaa76Oqpm2SL67uijv28fk02B2xaK2rEmqS3nb-6EbNj35Xgxb5H6VbfXf2gVgwfO_c7zJ1tpzQQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5RQCoXoIKKV8se2hsL3kfs9aGqKggiIo0qESRurne9DpGIHZJAxZ_qb2TGjku5cOPAwQfLXsvr-Xbmm_U8AL6EthUE3oQcubTiWhnHrVGCh06msbZKtGzVtaQb9Xrm6ir-tQB_m1wYCqtsdGKlqLPS0R75kaRgTCTrofw-vuXUNYr-rjYtNGpYnPuHP-iyTb91TlC-X6U8bfePz_i8qwB3wkQRF7nM0fA5GeapSwMrvBE-F3FuQjy3Omq5WNjYC2PDMA-Ul4EyWgcWqZW20ip87jtYQhoh4ypU8OLfno6i_YGqZSU1HOdUWm5e6AiNsjjq4Iprt9EnleLQII2nTjb_G8PntqAycKdrb-3TrMPqnEqzHzX2P8CCLzbgpo_vzRzaZjaeDEsq2VQnmjKK8B-wUZkNc6TdDBcO5W-y9GZAd12PWFpkeOBgtAfFAytRmY6awUjt2cQP6qDhgs2oNkkx2ITLV5ngR1gsysJvAYtdYF2mIpGnXmfGWO1iqsWILr9zWqltOGhEm4zrwiEJOVyEhKRGQkJISGokbMNeI9tkrkWmyZNgd16-vA_vz_o_u0m30zvfhRVJKRpVnNweLM4md_4TLLv72XA6-VwBlsHv14bBI7D6Jq0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Test+case+prioritization+using+modified+genetic+algorithm+and+ant+colony+optimization+for+regression+testing&rft.jtitle=International+Journal+of+Advanced+Technology+and+Engineering+Exploration&rft.au=Akila%2C+T+K&rft.au=Malathi%2C+A&rft.date=2022-03-01&rft.pub=Accent+Social+and+Welfare+Society&rft.issn=2394-5443&rft.eissn=2394-7454&rft.volume=9&rft.issue=88&rft.spage=384&rft_id=info:doi/10.19101%2FIJATEE.2021.874727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2394-5443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2394-5443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2394-5443&client=summon