A Review of Visible and Concealed Weapon Detection Techniques Using Machine Learning and Deep Learning

The Gun violence facing the international society is an epidemic to which the world experts have been striving to find a solution to, since a long time. Gun violence endangers the fundamental human right to live. It affects all aspects of modern society. The availability and easy access to the weapo...

Full description

Saved in:
Bibliographic Details
Published in:SN computer science Vol. 6; no. 6; p. 611
Main Authors: Sandhu, Simratjit kaur, Bhatia, Rekha
Format: Journal Article
Language:English
Published: Singapore Springer Nature Singapore 01.08.2025
Springer Nature B.V
Subjects:
ISSN:2661-8907, 2662-995X, 2661-8907
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Gun violence facing the international society is an epidemic to which the world experts have been striving to find a solution to, since a long time. Gun violence endangers the fundamental human right to live. It affects all aspects of modern society. The availability and easy access to the weapons these days appears to be the most contributing factor to atrocities committed with them. Numerous researches suggest that the mere awareness of access to a weapon increases the possibility that a crime is most likely to occur. The most dangerous crimes have been committed in countries with loose laws on the possession and ownership of guns. Governments and security agencies around the world have been working tirelessly to come up with efficient mechanisms to counter the ever-increasing threat of guns. Advancements in computer vision technology appear to be the silver lining that can guide the efforts towards making the world a safer place. After numerous trials and errors over the years, the researchers have zeroed in on the automatic weapon detection in public as well as private spaces to be the best solution to combat the increasing incidents of gun violence. CCTV cameras have long been used as monitoring devices, but with technological advancements they can be transformed into intelligent alerting devices that can sound alarms even in the absence of a human operator, in case of an anomaly detection. Autonomous detection through CCTV surveillance has replaced walk-through systems, since automatic systems are more proactive, less invasive, and less obvious to perpetrators of crime. As far as detection is concerned, Faster R-CNN and YOLO algorithms seem to be the preferred choices. From the research, it has been demonstrated that the techniques of pre-processing, augmentation, use of realistic and synthetic datasets improve the performance of detection. To help researchers in the field of automatic weapon detection, an extensive review has been done with the aim of covering the developments that have been done in the said field along with future directions and challenges associated with it. This review covers various machine learning, deep learning algorithms used for weapon detection, as well as the various datasets and the multiple challenges associated with the field.
AbstractList The Gun violence facing the international society is an epidemic to which the world experts have been striving to find a solution to, since a long time. Gun violence endangers the fundamental human right to live. It affects all aspects of modern society. The availability and easy access to the weapons these days appears to be the most contributing factor to atrocities committed with them. Numerous researches suggest that the mere awareness of access to a weapon increases the possibility that a crime is most likely to occur. The most dangerous crimes have been committed in countries with loose laws on the possession and ownership of guns. Governments and security agencies around the world have been working tirelessly to come up with efficient mechanisms to counter the ever-increasing threat of guns. Advancements in computer vision technology appear to be the silver lining that can guide the efforts towards making the world a safer place. After numerous trials and errors over the years, the researchers have zeroed in on the automatic weapon detection in public as well as private spaces to be the best solution to combat the increasing incidents of gun violence. CCTV cameras have long been used as monitoring devices, but with technological advancements they can be transformed into intelligent alerting devices that can sound alarms even in the absence of a human operator, in case of an anomaly detection. Autonomous detection through CCTV surveillance has replaced walk-through systems, since automatic systems are more proactive, less invasive, and less obvious to perpetrators of crime. As far as detection is concerned, Faster R-CNN and YOLO algorithms seem to be the preferred choices. From the research, it has been demonstrated that the techniques of pre-processing, augmentation, use of realistic and synthetic datasets improve the performance of detection. To help researchers in the field of automatic weapon detection, an extensive review has been done with the aim of covering the developments that have been done in the said field along with future directions and challenges associated with it. This review covers various machine learning, deep learning algorithms used for weapon detection, as well as the various datasets and the multiple challenges associated with the field.
ArticleNumber 611
Author Bhatia, Rekha
Sandhu, Simratjit kaur
Author_xml – sequence: 1
  givenname: Simratjit kaur
  orcidid: 0009-0004-3106-3087
  surname: Sandhu
  fullname: Sandhu, Simratjit kaur
  email: simrat.sandhu2020@gmail.com
  organization: Department of Computer Science, Punjabi University
– sequence: 2
  givenname: Rekha
  surname: Bhatia
  fullname: Bhatia, Rekha
  organization: Department of Computer Science, Punjabi University
BookMark eNp9kM1OwzAQhC1UJErpC3CyxDngnyROjlULBakICbVwtBxn3boqTrBbEG-PQxBw4rSr1Tezu3OKBq5xgNA5JZeUEHEVUlaKMiEsS0hKBU_IERqyPKdJURIx-NOfoHEIW0IiStI0z4bITPAjvFl4x43BTzbYagdYuRpPG6dB7aDGz6DaxuEZ7EHvbeyWoDfOvh4g4FWwbo3vld5YB3gByrtu0BnMANqfyRk6NmoXYPxdR2h1c72c3iaLh_nddLJINC0ESQDKklVQMMVqTVMGPBNGc10LYpiomWG1YpUQkahoxrNKFfE1nqu0qAzomo_QRe_b-qY7cC-3zcG7uFJyxoTIaZaSSLGe0r4JwYORrbcvyn9ISmQXqewjlTEn-RWp7ES8F4UIuzX4X-t_VJ-qTnqx
Cites_doi 10.3390/buildings14123777
10.1007/978-3-642-30721-8_15
10.3390/app11136085
10.1109/ICESC48915.2020.9155832
10.1007/s13369-021-05401-4
10.3390/app11167535
10.1007/978-3-030-22750-0_2
10.5244/C.2.23
10.1109/ICoDT252288.2021.9441538
10.1145/3154979.3154988
10.1109/TPAMI.2016.2577031
10.1109/ICoDT252288.2021.9441523
10.1109/ICCV.2015.169
10.1016/j.neucom.2017.05.012
10.1109/ACCESS.2021.3059170
10.1109/ACCESS.2021.3110335
10.1007/11744023_32
10.1109/EISIC49498.2019.9108871
10.1016/j.neucom.2021.01.075
10.1109/CICN51697.2021.9574690
10.1007/978-981-13-2414-7_3
10.1109/CogSIMA.2013.6523822
10.1016/j.ins.2014.03.128
10.1109/EESCO.2015.7253863
10.1016/j.knosys.2020.105590
10.1109/iWEM.2018.8536660
10.1007/978-3-319-10590-1_53
10.1109/CVPR.2016.91
10.1007/s11042-023-16231-x
10.1109/EuCAP.2014.6902403
10.1109/CVPR.2018.00678
10.1109/SMC52423.2021.9659207
10.1109/ICSSS49621.2020.9202254
10.1109/JSTSP.2022.3171168
10.1007/s00521-021-06317-8
10.1109/CVPR.2014.81
10.1109/ICASSP49357.2023.10095884
10.1109/ICIIP47207.2019.8985972
10.3390/s16010047
10.1007/978-3-031-72751-1_1
10.3934/mbe.2023956
10.1051/e3sconf/202339101071
10.1016/j.neucom.2018.10.076
10.1049/iet-ipr.2020.0706
10.1007/978-3-030-31321-0_38
10.3390/s20061678
10.1016/j.engappai.2020.104094
10.1016/j.imavis.2022.104406
10.2139/ssrn.4143822
10.3390/app14125277
10.1109/ICCV.1999.790410
10.1016/j.neunet.2020.09.013
10.1016/j.procs.2015.06.083
10.22214/ijraset.2021.37622
10.1109/GET.2016.7916679
10.1007/s00521-020-05365-w
10.1109/ITIKD56332.2023.10099733
10.1109/APSIPAASC47483.2019.9023182
10.3390/app12125772
10.3390/app9152965
10.1002/mop.31688
10.1109/ICIIS51140.2020.9342681
10.4018/IJSKD.2020010103
10.1109/SMART-TECH49988.2020.00045
10.3934/mbe.2023125
10.3390/s24216911
10.1007/978-3-319-46448-0_2
10.1109/CICT48419.2019.9066227
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s42979-025-04173-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_025_04173_0
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 0R~
2JN
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABECU
ABFSG
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACSTC
ACZOJ
ADKFA
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIGIU
AILAN
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ATHPR
AYFIA
BAPOH
BSONS
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
NQJWS
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AAYXX
ABRTQ
CITATION
KOV
JQ2
ID FETCH-LOGICAL-c1870-ee992be82a2dc142e357fc3cd70f27d2f2da2b77e82b1535ba866136a48bfecd3
IEDL.DBID RSV
ISSN 2661-8907
2662-995X
IngestDate Wed Nov 05 14:51:41 EST 2025
Sat Nov 29 07:46:06 EST 2025
Tue Jul 08 01:14:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Optimized weapon detection
Concealed weapon detection
Visible weapon detection
Faster R-CNN detection
Weapon detection challenges
Gun detection
Weapon detection review
YOLO detection
Edge device detection
Pistol detection
CCTV surveillance
SSD weapon detection
Object detection
Weapon datasets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1870-ee992be82a2dc142e357fc3cd70f27d2f2da2b77e82b1535ba866136a48bfecd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-3106-3087
PQID 3227761540
PQPubID 6623307
ParticipantIDs proquest_journals_3227761540
crossref_primary_10_1007_s42979_025_04173_0
springer_journals_10_1007_s42979_025_04173_0
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References 4173_CR26
P Bhagyalakshmi (4173_CR25) 2019; 3
J Lim (4173_CR82) 2021; 97
4173_CR28
A Bhatt (4173_CR60) 2023; 20
OA Arqub (4173_CR89) 2014; 279
4173_CR20
4173_CR65
4173_CR23
N Vallez (4173_CR33) 2021; 33
4173_CR67
4173_CR24
ZR Burnayev (4173_CR64) 2023; 14
4173_CR68
RM Aftab (4173_CR27) 2021; 5
R Miezianko (4173_CR87) 2006; 2
4173_CR7
R Debnath (4173_CR14) 2020; 14
4173_CR37
4173_CR6
4173_CR38
L He (4173_CR58) 2024; 14
4173_CR5
S Ren (4173_CR10) 2016; 39
4173_CR39
X Shi (4173_CR69) 2019; 61
S Naik (4173_CR32) 2021; 9
4173_CR9
D Romero (4173_CR42) 2019; 9
4173_CR74
4173_CR31
4173_CR76
A Jaleel (4173_CR50) 2022; 20
4173_CR34
4173_CR78
4173_CR35
A Velasco-Mata (4173_CR61) 2021; 33
4173_CR79
A Wang (4173_CR55) 2025; 37
JLS González (4173_CR80) 2020; 132
4173_CR71
D Berardini (4173_CR66) 2024; 83
B Aman (4173_CR40) 2021; 9
Z Abo-Hammour (4173_CR88) 2014; 2014
MK Galab (4173_CR30) 2021; 46
J Li (4173_CR54) 2024; 14
4173_CR48
4173_CR49
RK Tiwari (4173_CR16) 2015; 54
A Krizhevsky (4173_CR8) 2012; 25
4173_CR41
S Ahmed (4173_CR47) 2022; 12
X Gao (4173_CR77) 2022; 16
4173_CR86
M Grega (4173_CR15) 2016; 16
4173_CR43
MT Bhatti (4173_CR45) 2021; 9
4173_CR46
4173_CR81
N Geetha (4173_CR44) 2021; 10
AH Ashraf (4173_CR59) 2022; 70
L Pang (4173_CR73) 2020; 20
R Olmos (4173_CR36) 2018; 275
4173_CR3
4173_CR2
4173_CR1
HAH Mahmoud (4173_CR72) 2020; 11
W Tan (4173_CR75) 2017; 20
V Kaya (4173_CR29) 2021; 11
A Castillo (4173_CR84) 2019; 330
J Mei (4173_CR56) 2024; 24
4173_CR17
M Parande (4173_CR70) 2015; 4
4173_CR18
4173_CR19
J Ruiz-Santaquiteria (4173_CR62) 2021; 9
4173_CR51
K Vijayakumar (4173_CR52) 2023; 20
4173_CR53
4173_CR11
F Pérez-Hernández (4173_CR83) 2020; 194
4173_CR12
4173_CR13
4173_CR57
J Salido (4173_CR63) 2021; 11
MK Mohamed (4173_CR22) 2020; 12
V Manikandan (4173_CR21) 2022; 120
J Iqbal (4173_CR85) 2021; 440
PI Wilson (4173_CR4) 2006; 21
References_xml – volume: 10
  start-page: 2278
  issue: 05
  year: 2021
  ident: 4173_CR44
  publication-title: Int J Eng Res Technol (IJERT)
– volume: 14
  start-page: 3777
  issue: 12
  year: 2024
  ident: 4173_CR58
  publication-title: Buildings
  doi: 10.3390/buildings14123777
– ident: 4173_CR19
  doi: 10.1007/978-3-642-30721-8_15
– volume: 11
  start-page: 6085
  issue: 13
  year: 2021
  ident: 4173_CR63
  publication-title: Appl Sci
  doi: 10.3390/app11136085
– ident: 4173_CR13
  doi: 10.1109/ICESC48915.2020.9155832
– volume: 46
  start-page: 4049
  issue: 4
  year: 2021
  ident: 4173_CR30
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-021-05401-4
– volume: 11
  start-page: 7535
  issue: 16
  year: 2021
  ident: 4173_CR29
  publication-title: Appl Sci
  doi: 10.3390/app11167535
– ident: 4173_CR38
  doi: 10.1007/978-3-030-22750-0_2
– ident: 4173_CR3
  doi: 10.5244/C.2.23
– ident: 4173_CR28
  doi: 10.1109/ICoDT252288.2021.9441538
– ident: 4173_CR34
  doi: 10.1145/3154979.3154988
– volume: 39
  start-page: 1137
  issue: 6
  year: 2016
  ident: 4173_CR10
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– volume: 3
  start-page: 3
  year: 2019
  ident: 4173_CR25
  publication-title: Int J Trend Sci Res Dev
– ident: 4173_CR81
– ident: 4173_CR46
  doi: 10.1109/ICoDT252288.2021.9441523
– volume: 20
  start-page: 22
  year: 2022
  ident: 4173_CR50
  publication-title: Math Prbl Eng
– ident: 4173_CR9
  doi: 10.1109/ICCV.2015.169
– volume: 275
  start-page: 66
  year: 2018
  ident: 4173_CR36
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.012
– volume: 70
  start-page: 2761
  year: 2022
  ident: 4173_CR59
  publication-title: CMC-Comput Mater Contin
– volume: 9
  start-page: 34366
  year: 2021
  ident: 4173_CR45
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3059170
– volume: 2
  start-page: 5
  year: 2006
  ident: 4173_CR87
  publication-title: Terravic Res Infrared Database
– volume: 9
  start-page: 123815
  year: 2021
  ident: 4173_CR62
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3110335
– ident: 4173_CR2
  doi: 10.1007/11744023_32
– ident: 4173_CR24
  doi: 10.1109/EISIC49498.2019.9108871
– volume: 440
  start-page: 310
  year: 2021
  ident: 4173_CR85
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.075
– volume: 9
  start-page: 3707
  year: 2021
  ident: 4173_CR40
  publication-title: SSRN Electron J
– ident: 4173_CR41
  doi: 10.1109/CICN51697.2021.9574690
– ident: 4173_CR23
  doi: 10.1007/978-981-13-2414-7_3
– ident: 4173_CR39
  doi: 10.1109/CogSIMA.2013.6523822
– volume: 279
  start-page: 396
  year: 2014
  ident: 4173_CR89
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.03.128
– ident: 4173_CR17
  doi: 10.1109/EESCO.2015.7253863
– volume: 194
  year: 2020
  ident: 4173_CR83
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.105590
– ident: 4173_CR78
  doi: 10.1109/iWEM.2018.8536660
– ident: 4173_CR43
  doi: 10.1007/978-3-319-10590-1_53
– ident: 4173_CR11
  doi: 10.1109/CVPR.2016.91
– volume: 83
  start-page: 19109
  issue: 7
  year: 2024
  ident: 4173_CR66
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-16231-x
– ident: 4173_CR76
  doi: 10.1109/EuCAP.2014.6902403
– volume: 4
  start-page: 182
  issue: 9
  year: 2015
  ident: 4173_CR70
  publication-title: Int J Sci Res (IJSR)
– ident: 4173_CR79
  doi: 10.1109/CVPR.2018.00678
– ident: 4173_CR51
– ident: 4173_CR65
  doi: 10.1109/SMC52423.2021.9659207
– ident: 4173_CR6
  doi: 10.1109/ICSSS49621.2020.9202254
– volume: 16
  start-page: 791
  issue: 4
  year: 2022
  ident: 4173_CR77
  publication-title: IEEE J Select Top Signal Process
  doi: 10.1109/JSTSP.2022.3171168
– volume: 33
  start-page: 17273
  issue: 24
  year: 2021
  ident: 4173_CR61
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06317-8
– ident: 4173_CR5
  doi: 10.1109/CVPR.2014.81
– ident: 4173_CR74
  doi: 10.1109/ICASSP49357.2023.10095884
– ident: 4173_CR86
– ident: 4173_CR71
  doi: 10.1109/ICIIP47207.2019.8985972
– volume: 16
  start-page: 47
  issue: 1
  year: 2016
  ident: 4173_CR15
  publication-title: Sensors
  doi: 10.3390/s16010047
– ident: 4173_CR53
  doi: 10.1007/978-3-031-72751-1_1
– volume: 20
  start-page: 21611
  issue: 12
  year: 2023
  ident: 4173_CR52
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2023956
– ident: 4173_CR49
  doi: 10.1051/e3sconf/202339101071
– volume: 330
  start-page: 151
  year: 2019
  ident: 4173_CR84
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.076
– volume: 14
  start-page: 4663
  issue: 17
  year: 2020
  ident: 4173_CR14
  publication-title: IET Image Proc
  doi: 10.1049/iet-ipr.2020.0706
– ident: 4173_CR35
  doi: 10.1007/978-3-030-31321-0_38
– volume: 25
  start-page: 9
  year: 2012
  ident: 4173_CR8
  publication-title: Adv Neural Inform Process Syst
– volume: 20
  start-page: 1678
  issue: 6
  year: 2020
  ident: 4173_CR73
  publication-title: Sensors
  doi: 10.3390/s20061678
– volume: 97
  year: 2021
  ident: 4173_CR82
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.104094
– volume: 2014
  issue: 1
  year: 2014
  ident: 4173_CR88
  publication-title: Discret Dyn Nat Soc
– volume: 120
  year: 2022
  ident: 4173_CR21
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2022.104406
– ident: 4173_CR26
  doi: 10.2139/ssrn.4143822
– volume: 14
  start-page: 5277
  issue: 12
  year: 2024
  ident: 4173_CR54
  publication-title: Appl Sci
  doi: 10.3390/app14125277
– volume: 5
  start-page: 27
  issue: 4
  year: 2021
  ident: 4173_CR27
  publication-title: Lahore Garrison Univ Res J Comput Sci Inform Technol
– ident: 4173_CR1
  doi: 10.1109/ICCV.1999.790410
– ident: 4173_CR57
– ident: 4173_CR7
– volume: 132
  start-page: 297
  year: 2020
  ident: 4173_CR80
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.09.013
– volume: 54
  start-page: 703
  year: 2015
  ident: 4173_CR16
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2015.06.083
– volume: 9
  start-page: 1573
  year: 2021
  ident: 4173_CR32
  publication-title: Int J Res Appl Sci Eng Technol
  doi: 10.22214/ijraset.2021.37622
– ident: 4173_CR68
  doi: 10.1109/GET.2016.7916679
– volume: 33
  start-page: 5885
  issue: 11
  year: 2021
  ident: 4173_CR33
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05365-w
– ident: 4173_CR48
  doi: 10.1109/ITIKD56332.2023.10099733
– volume: 21
  start-page: 127
  issue: 4
  year: 2006
  ident: 4173_CR4
  publication-title: J Comput Sci Coll
– ident: 4173_CR31
  doi: 10.1109/APSIPAASC47483.2019.9023182
– volume: 37
  start-page: 107984
  year: 2025
  ident: 4173_CR55
  publication-title: Adv Neural Inf Process Syst
– volume: 12
  start-page: 5772
  issue: 12
  year: 2022
  ident: 4173_CR47
  publication-title: Appl Sci
  doi: 10.3390/app12125772
– volume: 11
  start-page: 2
  year: 2020
  ident: 4173_CR72
  publication-title: Int J Adv Comput Sci Appl
– volume: 9
  start-page: 2965
  issue: 15
  year: 2019
  ident: 4173_CR42
  publication-title: Appl Sci
  doi: 10.3390/app9152965
– volume: 61
  start-page: 1116
  issue: 4
  year: 2019
  ident: 4173_CR69
  publication-title: Microw Opt Technol Lett
  doi: 10.1002/mop.31688
– volume: 20
  start-page: 17
  year: 2017
  ident: 4173_CR75
  publication-title: Int J Antennas Propag
– ident: 4173_CR18
– ident: 4173_CR67
  doi: 10.1109/ICIIS51140.2020.9342681
– volume: 14
  start-page: 5
  year: 2023
  ident: 4173_CR64
  publication-title: Int J Adv Comput Sci Appl
– volume: 12
  start-page: 49
  issue: 1
  year: 2020
  ident: 4173_CR22
  publication-title: Int J Sociotechnol Knowl Dev (IJSKD)
  doi: 10.4018/IJSKD.2020010103
– ident: 4173_CR37
  doi: 10.1109/SMART-TECH49988.2020.00045
– volume: 20
  start-page: 2669
  issue: 2
  year: 2023
  ident: 4173_CR60
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2023125
– volume: 24
  start-page: 6911
  issue: 21
  year: 2024
  ident: 4173_CR56
  publication-title: Sensors
  doi: 10.3390/s24216911
– ident: 4173_CR12
  doi: 10.1007/978-3-319-46448-0_2
– ident: 4173_CR20
  doi: 10.1109/CICT48419.2019.9066227
SSID ssj0002504465
Score 2.2987714
SecondaryResourceType review_article
Snippet The Gun violence facing the international society is an epidemic to which the world experts have been striving to find a solution to, since a long time. Gun...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 611
SubjectTerms Accuracy
Algorithms
Anomalies
Artificial neural networks
Automation
Cameras
Closed circuit television
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Computer vision
Concealed weapons detection
Crime
Data Structures and Information Theory
Datasets
Deep learning
Eigenvalues
Gun violence
Guns
Information Systems and Communication Service
Machine learning
Mass murders
Pattern Recognition and Graphics
Public safety
Review Article
Sensors
Software Engineering/Programming and Operating Systems
Surveillance
Synthetic data
Violence
Vision
Weapons
Title A Review of Visible and Concealed Weapon Detection Techniques Using Machine Learning and Deep Learning
URI https://link.springer.com/article/10.1007/s42979-025-04173-0
https://www.proquest.com/docview/3227761540
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: RSV
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: RSV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQYWChPEWhIA9sYKlxHueMVUvFQoWglG6R4weqhNKqKfx-Ls6jAsEAa_yQded7xPfdHSFXcRwK4FyxQHoxC_CWMGEjyWSKahI9bDRiZbMJGI_FbBY_VElheY12r0OSTlM3yW6oOSFmRfvVXuCBz_BHfRvNnSgaNjw-TZuXlaIoVxCFVYbMz0u_WqGNa_ktGuqMzKj9v-Ptk73KqaT98hYckC2THZJ23bCBVvJ7RGyflrEAurB0OkdpeDNUZpoOiuRFNBWavhi5XGR0aNYOo5XRSV3kNacOXkDvHfzS0Koy66vbYGjMsvlyTJ5Ht5PBHasaLTDlobwyY-KYp0ZwybXyAm78EKzylYae5aC55VryFABnpKghw1QKNOt-JAORWqO0f0Ja2SIzp4SGPEq10lGBHkUyKFwFonhoUmAh9KBDrmvCJ8uynkbSVE52JEyQhIkjYdLrkG7Nm6SSrTxBFQSAjliAwzc1LzbDv-929rfp52SXO3YWaL8uaa1X7-aC7KiP9TxfXbo79wmdUdBj
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kCnqxPrFadQ_edKHZbLLJsbSWim0RrbW3sNmHFCQtTfX3O9k8iqIHvWYfLDM7j-x8M4PQVRh6AadUEiackDC4JSQwviAiBjUJHjYYsbzZBB-Nguk0fCiSwtIS7V6GJK2mrpLdQHPykGTtV1vM4S6BH_VNBhYrq5j_-DSpXlayolzM94oMmZ-XfrVCa9fyWzTUGple_X_H20O7hVOJ2_kt2EcbOjlA9bJhAy7k9xCZNs5jAXhu8GQG0vCmsUgU7mTJi2AqFH7RYjFPcFevLEYrweOyyGuKLbwADy38UuOiMuur3aCr9aL6coSee7fjTp8UjRaIdEBeidZhSGMdUEGVdBjVrseNdKXiLUO5ooYqQWPOYUYMGtKLRQBm3fUFC2KjpXKPUS2ZJ_oEYY_6sZLKz9CjQAYJq3iQPTRJbrjn8Aa6LgkfLfJ6GlFVOdmSMAISRpaEUauBmiVvokK20ghUEOfgiDEYvil5sR7-fbfTv02_RNv98XAQDe5G92doh1rWZsi_Jqqtlu_6HG3Jj9UsXV7Y-_cJa3DTRw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kinixPrFadQ_edGmzeWxyLK1FUUvBWnsLm31IQdLQRn-_s5ukVdGDeM0-CDM7j935ZgahiyjyQ0apIB53IuLBKSGhDjjhCahJ8LDBiBXNJthgEE4m0fBTFr9Fu1chySKnwVRpSvNWJnVrmfgGWpRFxLRibXsOcwlc2tc9A6Q39_XH8fKVxRTo8gK_zJb5eelXi7RyM79FRq3B6df__6s7aLt0NnGnOB27aE2le6heNXLApVzvI93BRYwAzzQeT0FKXhXmqcRdk9QIJkTiZ8WzWYp7KrfYrRSPquKvC2xhB_jBwjIVLiu2vtgNekplyy8H6Kl_PerekLIBAxEOyDFRKopookLKqRSOR5XrMy1cIVlbUyapppLThDGYkYDm9BMegrl3A-6FiVZCuoeols5SdYSwT4NEChkYVCmQQcAqFpoHKME08x3WQJcVE-KsqLMRLysqWxLGQMLYkjBuN1Cz4lNcytwiBtXEGDhoHgxfVXxZDf--2_Hfpp-jzWGvH9_fDu5O0Ba1nDWAwCaq5fM3dYo2xHs-XczP7FH8AHpC3Cs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Visible+and+Concealed+Weapon+Detection+Techniques+Using+Machine+Learning+and+Deep+Learning&rft.jtitle=SN+computer+science&rft.au=Sandhu%2C+Simratjit+kaur&rft.au=Bhatia%2C+Rekha&rft.date=2025-08-01&rft.pub=Springer+Nature+Singapore&rft.eissn=2661-8907&rft.volume=6&rft.issue=6&rft_id=info:doi/10.1007%2Fs42979-025-04173-0&rft.externalDocID=10_1007_s42979_025_04173_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon